Analysis of elastic and elastoplastic models when interpreting nanoindentation results
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 2, pp. 245-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the current and widely used non-destructive testing methods for monitoring and determining the elastic properties of materials is nanoindentation. In this case, to interpret the test results, a non-trivial task arises of constructing an adequate mathematical model of the indentation process. As a rule, in many cases, analytical formulas are used that are obtained from an elastic linear formulation of problems about the introduction of a non-deformable stamp into a homogeneous elastic half-space. Currently, the numerical formulation of the problem makes it possible to obtain and use a numerical solution obtained taking into account the complete plastic nonlinear behavior of the material. In this work, a study of contact problems on the introduction of a spherical and conical indenter into an elastoplastic homogeneous half-space was carried out. To verify the numerical solution, the problem of introducing a spherical and conical indenter into an elastic homogeneous half-space was also solved and compared with known analytical solutions. Issues of convergence and tuning of numerical methods, the influence of plasticity and the applicability of analytical solutions are explored. Problems are solved numerically using the finite element method in the Ansys Mechanical software package.
@article{ISU_2024_24_2_a8,
     author = {I. A. Panfilov and S. M. Aizikovich and A. S. Vasiliev},
     title = {Analysis of elastic and elastoplastic models when interpreting nanoindentation results},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {245--253},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a8/}
}
TY  - JOUR
AU  - I. A. Panfilov
AU  - S. M. Aizikovich
AU  - A. S. Vasiliev
TI  - Analysis of elastic and elastoplastic models when interpreting nanoindentation results
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2024
SP  - 245
EP  - 253
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a8/
LA  - ru
ID  - ISU_2024_24_2_a8
ER  - 
%0 Journal Article
%A I. A. Panfilov
%A S. M. Aizikovich
%A A. S. Vasiliev
%T Analysis of elastic and elastoplastic models when interpreting nanoindentation results
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2024
%P 245-253
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a8/
%G ru
%F ISU_2024_24_2_a8
I. A. Panfilov; S. M. Aizikovich; A. S. Vasiliev. Analysis of elastic and elastoplastic models when interpreting nanoindentation results. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 2, pp. 245-253. http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a8/

[1] Bulychev S. I., Alekhin V. P., Testing of Materials by Continuous Indentation of an Indenter, Mashinostroenie, M., 1990, 224 pp. (in Russian)

[2] Golovin Yu. I., Nanoindentation and its Capabilities, Mashinostroenie, M., 2009, 312 pp. (in Russian)

[3] Field J. S., Swain M. V., “A simple predictive model for spherical indentation”, Journal of Materials Research, 8:2 (1993), 297–306 | DOI

[4] Oliver W. C., Pharr G. M., “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research, 7:6 (1992), 1564–1583 | DOI

[5] Hertz H., “Ueber die Berührung fester elastischer Körper”, Journal für die reine und angewandte Mathematik, 92 (1881), 156–171 (in German) | DOI | MR

[6] Dzhonson K. L., Mechanics of Contact, Cambridge University Press, Cambridge, 1987, 452 pp.

[7] Galin L. A., Contact Problems of the Theory of Elasticity, GITTL, M., 1953, 264 pp. (in Russian) | MR

[8] He L. H., Swain M. V., “Nanoindentation derived stress-strain properties of dental materials”, Dental Materials, 23:7 (2007), 814–821 | DOI

[9] Potelezhko V. P., Fillipov A. P., “Contact problem for a plate lying on an elastic foundation”, Soviet Applied Mechanics, 3:1 (1967), 87–91 | DOI

[10] Landau L. D., Lifshts E. M., Theoretical Physics, v. 7, Theory of Elasticity, Nauka, M., 1987, 248 pp. (in Russian) | MR

[11] Kral E. R., Komvopoulos K., Bogy D. B., “Elastic-plastic finite element analysis of repeated indentation of a half-space by a rigid sphere”, Journal of Applied Mechanics, 60:4 (1993), 829–841 | DOI

[12] Vorovich I. I., Aleksandrov V. M. (eds.), Mechanics of Contact Interactions, Fizmatlit, M., 2001, 672 pp. (in Russian)

[13] Dub S. N., “Curves of elasto-plastic deformation of thin coatings obtained in depth-sensing indentation experiments”, MRS Symposium Proceedings, 505 (1998), 223–228 | DOI

[14] El-Sherbiney M. G. D., Halling J., “The Hertzian contact of surfaces covered with metallic films”, Wear, 40:3 (1996), 325–337 | DOI

[15] Pharr G. M., Oliver W. C., “Measurement of thin film mechanical properties using nanoindentation”, MRS Bulletin, 17 (1992), 28–33 | DOI

[16] Aizikovich S. M., “Asymptotic solutions of contact problems of the theory of elasticity for media inhomogeneous in depth”, Journal of Applied Mathematics and Mechanics, 46:1 (1982), 116–124 | DOI | MR | Zbl

[17] Vasiliev A. S., Volkov S. S., Aizikovich S. M., “Approximated analytical solution of a problem on indentation of an electro-elastic half-space with inhomogeneous coating by a conductive punch”, Doklady Physics, 63:1 (2018), 18–22 | DOI | DOI | MR

[18] Volkov S. S., Vasiliev A. S., Aizikovich S. M., Seleznev N. M., Leontieva A. V., “Stress-strain state of an elastic soft functionally-graded coating subjected to indentation by a spherical punch”, PNRPU Mechanics Bulletin, 2016, no. 4, 20–34 (in Russian) | DOI

[19] Vasiliev A. S., Volkov S. S., Aizikovich S. M., Litvinenko A. N., “Indentation of an elastic half-space reinforced with a functionally graded interlayer by a conical punch”, Materials Physics and Mechanics, 40:2 (2018), 254–260 | DOI | MR

[20] Vasiliev A. S., Volkov S. S., Aizikovich S. M., “Indentation of an axisymmetric punch into an elastic transversely-isotropic half-space with functionally graded transversely-isotropic coating”, Materials Physics and Mechanics, 28:1–2 (2016), 11–15

[21] Sadyrin E., Vasiliev A., Volkov S., “Mathematical modeling of experiment on Berkovich nanoindentation of ZrN coating on steel substrate”, Proceedings of the 14th International Conference on Local Mechanical Properties – LMP 2019, Acta Polytechnica CTU Proceedings, 27, 2020, 18–21 | DOI

[22] Ovcharenko A., Halperin G., Verberne G., Etsion I., “In situ investigation of the contact area in elastic-plastic spherical contact during loading-unloading”, Tribology Letters, 25 (2007), 153–160 | DOI