Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_2_a0, author = {A. A. Dosiyev}, title = {A highly accurate difference method for solving the {Dirichlet} problem {of~the~Laplace} equation on a rectangular parallelepiped with~boundary~values~in~$C^{k,1}$}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {162--172}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a0/} }
TY - JOUR AU - A. A. Dosiyev TI - A highly accurate difference method for solving the Dirichlet problem of~the~Laplace equation on a rectangular parallelepiped with~boundary~values~in~$C^{k,1}$ JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 162 EP - 172 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a0/ LA - en ID - ISU_2024_24_2_a0 ER -
%0 Journal Article %A A. A. Dosiyev %T A highly accurate difference method for solving the Dirichlet problem of~the~Laplace equation on a rectangular parallelepiped with~boundary~values~in~$C^{k,1}$ %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 162-172 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a0/ %G en %F ISU_2024_24_2_a0
A. A. Dosiyev. A highly accurate difference method for solving the Dirichlet problem of~the~Laplace equation on a rectangular parallelepiped with~boundary~values~in~$C^{k,1}$. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 2, pp. 162-172. http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a0/
[1] Tarjan R. E., “Graph theory and Gaussian elimination”, Sparse Matrix Computations, eds. Bunch J. R., Rose D. J., Academic Press, 1976, 3–22 | DOI | MR
[2] Fox L., “Some improvements in the use of relaxation methods for the solution of ordinary and partial differential equations”, Proceedings of the Royal Society A, 190 (1947), 31–59 | DOI | MR
[3] Woods L. C., “Improvements to the accuracy of arithmetical solutions to certain two-dimensional field problems”, The Quarterly Journal of Mechanics and Applied Mathematics, 3:3 (1950), 349–363 | DOI | MR | Zbl
[4] Volkov E. A., “Solving the Dirichlet problem by a method of corrections with higher order differences. I”, Differentsial'nye Uravneniya, 1:7 (1965), 946–960 (in Russian) | MR
[5] Volkov E. A., “Solving the Dirichlet problem by a method of corrections with higher order differences. II”, Differentsial'nye Uravneniya, 1:8 (1965), 1070–1084 (in Russian) | MR | Zbl
[6] Berikelashvili G. K., Midodashvili B. G., “Compatible convergence estimates in the method of refinement by higher-order differences”, Differential Equations, 51:1 (2015), 107–115 | DOI | MR | Zbl
[7] Volkov E. A., “A two-stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped”, Computational Mathematics and Mathematical Physics, 49:3 (2009), 496–501 | DOI | MR | Zbl
[8] Volkov E. A., Dosiyev A. A., “A highly accurate homogeneous scheme for solving the Laplace equation on a rectangular parallelepiped with boundary values in $C^{k1}$”, Computational Mathematics and Mathematical Physics, 52:6 (2012), 879–886 | DOI | MR | Zbl
[9] Volkov E. A., “On differential properties of solutions of the Laplace and Poisson equations on a parallelepiped and efficient error estimates of the method of nets”, Proceedings of the Steklov Institute of Mathematics, 105 (1969), 54–78 | MR
[10] Mikhailov V. P., Partial Differential Equations, Mir, M., 1978, 396 pp. (in Russian) | MR
[11] Samarskii A. A., The Theory of Difference Schemes, Dekker Inc, Marcel, 2001, 761 pp. | MR | Zbl
[12] Volkov E. A., “Application of a 14-point averaging operator in the grid method”, Computational Mathematics and Mathematical Physics, 50:12 (2010), 2023–2032 | DOI | MR | Zbl
[13] Smith B., Bjorstad P., Gropp W., Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, 1996, 238 pp. | MR | Zbl
[14] Volkov E. A., “On the smoothness of solutions to the Dirichlet problem and the method of composite grids on polyhedra”, Proceedings of the Steklov Institute of Mathematics, 150 (1981), 71–103 | MR | Zbl
[15] Volkov E. A., “A method of composite grids on a prism with an arbitrary polygonal base”, Proceedings of the Steklov Institute of Mathematics, 243 (2003), 1–23 | DOI | MR
[16] Volkov E. A., “On the grid method for approximating the derivatives of the solution of the Dirichlet problem for the Laplace equation on the rectangular parallelepiped”, Russian Journal of Numerical Analysis and Mathematical Modelling, 19:3 (2004), 269–278 | DOI | MR | Zbl
[17] Dosiyev A. A., “The high accurate block-grid method for solving Laplace's boundary value problem with singularities”, SIAM Journal on Numerical Analysis, 42:1 (2004), 153–178 | DOI | MR | Zbl
[18] Dosiyev A. A., “The block-grid method for the approximation of the pure second order derivatives for the solution of Laplace's equation on a staircase polygon”, Journal of Computational and Applied Mathematics, 259, pt. A (2014), 14–23 | DOI | MR | Zbl
[19] Dosiyev A. A., Sarikaya H., “A highly accurate difference method for approximating the solution and its first derivatives of the Dirichlet problem for Laplace's equation on a rectangle”, Mediterranean Journal of Mathematics, 18 (2021), 252 | DOI | MR | Zbl