Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2023_23_4_a8, author = {N. V. Dorofeev and A. V. Grecheneva}, title = {Algorithm for motion detection and gait classification based on~mobile phone accelerometer data}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {531--543}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a8/} }
TY - JOUR AU - N. V. Dorofeev AU - A. V. Grecheneva TI - Algorithm for motion detection and gait classification based on~mobile phone accelerometer data JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2023 SP - 531 EP - 543 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a8/ LA - ru ID - ISU_2023_23_4_a8 ER -
%0 Journal Article %A N. V. Dorofeev %A A. V. Grecheneva %T Algorithm for motion detection and gait classification based on~mobile phone accelerometer data %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2023 %P 531-543 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a8/ %G ru %F ISU_2023_23_4_a8
N. V. Dorofeev; A. V. Grecheneva. Algorithm for motion detection and gait classification based on~mobile phone accelerometer data. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 4, pp. 531-543. http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a8/
[1] Sprager S., Juric M. B., “Inertial Sensor-Based Gait Recognition: A Review”, Sensors, 15 (2015), 22089–22127 | DOI
[2] Connor P., Ross A., “Biometric recognition by gait: A survey of modalities and features”, Computer Vision and Image Understanding, 167 (2018), 1–27 | DOI
[3] Guelta B., Tlemsani R., Chouraqui S., Benouis M., “An improved behavioral biometric system based on gait and ECG signals”, International Journal of Intelligent Engineering Systems, 12:6 (2019), 147–156 | DOI
[4] Ren Y., Chuah M. C., “User verification leveraging gait recognition for smartphone enabled mobile healthcare systems”, IEEE Transactions on Mobile Computing, 14:9 (2015), 1961–1974 | DOI
[5] Khabir K. M., Siraj Md. S., Ahmed M., Ahmed M. U., “Prediction of gender and age from inertial sensor-based gait dataset”, Joint 2019 8th International Conference on Informatics, Electronics Vision (ICIEV) 3rd International Conference on Imaging, Vision Pattern Recognition (IVPR) (Eastern Washington University, May 30–June 4, 2019), 371–376 | DOI
[6] Shema-Shiratzaky S., Beer Y., Mor A., Elbaz A., “Smartphone-based inertial sensors technology — Validation of a new application to measure spatiotemporal gait metrics”, Gait Posture, 93 (2022), 102–106 | DOI
[7] Garufov D., Bours P., “User authentication based on foot motion”, SIViP, 5 (2011), 457–467 | DOI
[8] Reyes O. C., Vera-Rodriguez R., Scully P. J., Ozanyan K. B., “Analysis of spatio-temporal representations for robust footstep recognition with deep residual neural networks”, IEEE Transaction on Pattern Analysis and Machine Intelligence, 4 (2018), 1–13 | DOI
[9] Sokolova A. I., Konushin A. S., “Methods of gait recognition in video”, Proceedings of the Institute for System Programming of the RAS, 31:1 (2019), 69–82 (in Russian) | DOI
[10] Helvas A. V., Belyaikina N. G., Gilya-Zetinov A. A., Chernikova D. D., Shabunin V. M., Yapryntsev E. O., “Gesture recognition using a neural network and the application of this approach to create a new generation of gaming gadgets”, Proceedings of Moscow Institute of Physics and Technology, 2017, no. 2 (34), 1–7 (in Russian)
[11] Teh P.S., Zhang N., Tan S.-Y., Shi Q., Khoh W.H., Nawaz R., “Strengthen user authentication on mobile devices by using user's touch dynamics pattern”, Journal of Ambient Intelligence and Humanized Computing, 11:10 (2020), 4019–4039 | DOI
[12] Zhang X., Yao L., Huang C., Gu T., Yang Z., Liu Y., “DeepKey: A multimodal biometric authentication system via deep decoding gaits and brainwaves”, ACM Transactions on Intelligent Systems and Technology, 11:4 (2020), 49 | DOI
[13] Grecheneva A. V., Dorofeev N. V., Goryachev M. S., “Estimation of human biomechanics during registration with a wearable device”, Journal of Physics Conference Series, 2096:1 (2021), 012117 | DOI
[14] Lu H., Huang J., Saha T., Nachman L., “Unobtrusive gait verification for mobile phones” (Seattle, WA, USA, Sept. 13–17, 2014), Proceedings of the 2014 ACM International Symposium on Wearable Computers, 91–98 | DOI
[15] Oguz A., Ertugrul O. F., “Human identification based on accelerometer sensors obtained by mobile phone data”, Biomedical Signal Processing and Control, 77 (2022), 103847 | DOI
[16] Tandon R., Javid P., Giulio I. D., “Mobile phone use is detrimental for gait stability in young adults”, Gait Posture, 88 (2021), 37–41 | DOI
[17] Pierce A., Ignasiak N. K., Eiteman-Pang W. K., Rakovsky C., “Mobile phone sensors can discern medication-related gait quality changes in Parkinson's patients in the home environment”, Computer Methods and Programs in Biomedicine Update, 1 (2021), 100028 | DOI
[18] Lunardini F., Malavolti M., Pedrocchi A. L. G., Borghese N. A., Ferrante S., “A mobile app to transparently distinguish single-from dual-task walking for the ecological monitoring of age-related changes in daily-life gait”, Gait Posture, 86 (2021), 27–32 | DOI