Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2023_23_4_a1, author = {N. P. Mozhey}, title = {Homogeneous spaces of unsolvable {Lie} groups that do not admit equiaffine connections of nonzero curvature}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {435--442}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a1/} }
TY - JOUR AU - N. P. Mozhey TI - Homogeneous spaces of unsolvable Lie groups that do not admit equiaffine connections of nonzero curvature JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2023 SP - 435 EP - 442 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a1/ LA - ru ID - ISU_2023_23_4_a1 ER -
%0 Journal Article %A N. P. Mozhey %T Homogeneous spaces of unsolvable Lie groups that do not admit equiaffine connections of nonzero curvature %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2023 %P 435-442 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a1/ %G ru %F ISU_2023_23_4_a1
N. P. Mozhey. Homogeneous spaces of unsolvable Lie groups that do not admit equiaffine connections of nonzero curvature. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 4, pp. 435-442. http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a1/
[1] Belko I. V., Burdun A. A., Vedernikov V. I., Fedenko A. S., Differential Geometry, BSU Publ, Minsk, 1982, 255 pp. (in Russian)
[2] Klein F., “A comparative review of recent researches in geometry”, Bulletin of the American Mathematical Society, 2 (1893), 215–249 | DOI | MR
[3] Nomizu K., Sasaki T., Affine Differential Geometry: Geometry of Affine Immersions, Cambridge University Press, Cambridge–New York, 1994, 263 pp. | MR
[4] Mozhey N. P., “Connections of nonzero curvature on homogeneous spaces of unsolvable transformation groups”, Siberian Electronic Mathematical Reports, 15 (2018), 773–785 | DOI | MR | Zbl
[5] Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978, 628 pp. | DOI | MR | Zbl
[6] Mostow G. D., “The extensibility of local Lie groups of transformations and groups of surfaces”, Annals of Mathematics, 52:3 (1950), 606–636 | DOI | MR | Zbl
[7] Nomizu K., “Invariant affine connections on homogeneous spaces”, American Journal of Mathematics, 76:1 (1954), 33–65 | DOI | MR | Zbl
[8] Kobayashi S., Nomizu K., Foundations of Differential Geometry, v. 1, John Wiley and Sons, New York, 1963, 454 pp. | MR | Zbl
[9] Kobayashi S., Nomizu K., Foundations of Differential Geometry, v. 2, John Wiley and Sons, New York, 1969, 488 pp. | MR | Zbl