Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2023_23_4_a0, author = {M. Y. Kelbert and Y. Suhov}, title = {Wasserstein and weighted metrics for multidimensional {Gaussian} distributions}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {422--434}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a0/} }
TY - JOUR AU - M. Y. Kelbert AU - Y. Suhov TI - Wasserstein and weighted metrics for multidimensional Gaussian distributions JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2023 SP - 422 EP - 434 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a0/ LA - en ID - ISU_2023_23_4_a0 ER -
%0 Journal Article %A M. Y. Kelbert %A Y. Suhov %T Wasserstein and weighted metrics for multidimensional Gaussian distributions %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2023 %P 422-434 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a0/ %G en %F ISU_2023_23_4_a0
M. Y. Kelbert; Y. Suhov. Wasserstein and weighted metrics for multidimensional Gaussian distributions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 4, pp. 422-434. http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a0/
[1] Vallander S. S., “Calculation of the Wasserstein distance between probability distributions on the line”, Theory of Probability Its Applications, 18:4 (1974), 784–786 | DOI | MR
[2] Rachev S. T., “The Monge – Kantorovich mass transference problem and its stochastic applications”, Theory of Probability Its Applications, 29:4 (1985), 647–676 | DOI | MR | Zbl
[3] Givens C. R., Shortt R. M., “A class of Wasserstein metrics for probability distributions”, The Michigan Mathematical Journal, 31:2 (1984), 231–240 | DOI | MR | Zbl
[4] Olkin I., Pukelsheim F., “The distances between two random vectors with given dispersion matrices”, Linear Algebra and its Applications, 48 (1982), 257–263 | DOI | MR | Zbl
[5] Dowson D. C., Landau B. V., “The Fréchet distance between multivariate Normal distributions”, Journal of Multivariate Analysis, 12:3 (1982), 450–455 | DOI | MR | Zbl
[6] Cai Y., Lim L.-H., “Distances between probability distributions of different dimensions”, IEEE Transactions on Information Theory, 68:6 (2022), 4020–4031 | DOI | MR | Zbl
[7] Dwivedi A., Wang S., Tajer A., “Discriminant analysis under $f$-divergence measures”, Entropy, 24:2 (2022), 188, 26 pp. | DOI | MR
[8] Devroye L., Mehrabian A., Reddad T., The total variation distance between high-dimensional Gaussians, 2020, 12 pp., arXiv: 1810.08693v5
[9] Endres D. M., Schindelin J. E., “A new metric for probability distributions”, IEEE Transactions on Information Theory, 49:7 (2003), 1858–1860 | DOI | MR | Zbl
[10] Stuhl I., Suhov Y., Yasaei Sekeh S., Kelbert M., “Basic inequalities for weighted entropies”, Aequationes Mathematicae, 90:4 (2016), 817–848 | DOI | MR | Zbl
[11] Stuhl I., Kelbert M., Suhov Y., Yasaei Sekeh S., “Weighted Gaussian entropy and determinant inequalities”, Aequationes Mathematicae, 96:1 (2022), 85–114 | DOI | MR | Zbl