Wasserstein and weighted metrics for multidimensional Gaussian distributions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 4, pp. 422-434.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a number of low and upper bounds for Lévy – Prokhorov, Wasserstein, Frechét, and Hellinger distances between probability distributions of the same or different dimensions. The weighted (or context-sensitive) total variance and Hellinger distances are introduced. The upper and low bounds for these weighted metrics are proved. The low bounds for the minimum of different errors in sensitive hypothesis testing are proved.
@article{ISU_2023_23_4_a0,
     author = {M. Y. Kelbert and Y. Suhov},
     title = {Wasserstein and weighted metrics for multidimensional {Gaussian} distributions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {422--434},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a0/}
}
TY  - JOUR
AU  - M. Y. Kelbert
AU  - Y. Suhov
TI  - Wasserstein and weighted metrics for multidimensional Gaussian distributions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2023
SP  - 422
EP  - 434
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a0/
LA  - en
ID  - ISU_2023_23_4_a0
ER  - 
%0 Journal Article
%A M. Y. Kelbert
%A Y. Suhov
%T Wasserstein and weighted metrics for multidimensional Gaussian distributions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2023
%P 422-434
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a0/
%G en
%F ISU_2023_23_4_a0
M. Y. Kelbert; Y. Suhov. Wasserstein and weighted metrics for multidimensional Gaussian distributions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 4, pp. 422-434. http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a0/

[1] Vallander S. S., “Calculation of the Wasserstein distance between probability distributions on the line”, Theory of Probability Its Applications, 18:4 (1974), 784–786 | DOI | MR

[2] Rachev S. T., “The Monge – Kantorovich mass transference problem and its stochastic applications”, Theory of Probability Its Applications, 29:4 (1985), 647–676 | DOI | MR | Zbl

[3] Givens C. R., Shortt R. M., “A class of Wasserstein metrics for probability distributions”, The Michigan Mathematical Journal, 31:2 (1984), 231–240 | DOI | MR | Zbl

[4] Olkin I., Pukelsheim F., “The distances between two random vectors with given dispersion matrices”, Linear Algebra and its Applications, 48 (1982), 257–263 | DOI | MR | Zbl

[5] Dowson D. C., Landau B. V., “The Fréchet distance between multivariate Normal distributions”, Journal of Multivariate Analysis, 12:3 (1982), 450–455 | DOI | MR | Zbl

[6] Cai Y., Lim L.-H., “Distances between probability distributions of different dimensions”, IEEE Transactions on Information Theory, 68:6 (2022), 4020–4031 | DOI | MR | Zbl

[7] Dwivedi A., Wang S., Tajer A., “Discriminant analysis under $f$-divergence measures”, Entropy, 24:2 (2022), 188, 26 pp. | DOI | MR

[8] Devroye L., Mehrabian A., Reddad T., The total variation distance between high-dimensional Gaussians, 2020, 12 pp., arXiv: 1810.08693v5

[9] Endres D. M., Schindelin J. E., “A new metric for probability distributions”, IEEE Transactions on Information Theory, 49:7 (2003), 1858–1860 | DOI | MR | Zbl

[10] Stuhl I., Suhov Y., Yasaei Sekeh S., Kelbert M., “Basic inequalities for weighted entropies”, Aequationes Mathematicae, 90:4 (2016), 817–848 | DOI | MR | Zbl

[11] Stuhl I., Kelbert M., Suhov Y., Yasaei Sekeh S., “Weighted Gaussian entropy and determinant inequalities”, Aequationes Mathematicae, 96:1 (2022), 85–114 | DOI | MR | Zbl