Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2023_23_3_a5, author = {A. Kh. Stash and N. A. Loboda}, title = {On the question of the residual of strong exponents of oscillation on~the~set of solutions of third-order differential equations}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {348--356}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a5/} }
TY - JOUR AU - A. Kh. Stash AU - N. A. Loboda TI - On the question of the residual of strong exponents of oscillation on~the~set of solutions of third-order differential equations JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2023 SP - 348 EP - 356 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a5/ LA - ru ID - ISU_2023_23_3_a5 ER -
%0 Journal Article %A A. Kh. Stash %A N. A. Loboda %T On the question of the residual of strong exponents of oscillation on~the~set of solutions of third-order differential equations %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2023 %P 348-356 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a5/ %G ru %F ISU_2023_23_3_a5
A. Kh. Stash; N. A. Loboda. On the question of the residual of strong exponents of oscillation on~the~set of solutions of third-order differential equations. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 3, pp. 348-356. http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a5/
[1] Sergeev I. N., “Definition and properties of characteristic frequencies of a linear equation”, Journal of Mathematical Sciences, 135:1 (2006), 2764–2793 | DOI | MR | Zbl
[2] Sergeev I. N., “Oscillation and wandering characteristics of solutions of a linear differential system”, Izvestiya: Mathematics, 76:1 (2012), 139–162 | DOI | DOI | MR | Zbl
[3] Sergeev I. N., “The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems”, Sbornik: Mathematics, 204:1 (2013), 114–132 | DOI | DOI | MR | Zbl
[4] Sergeev I. N., “Oscillation, rotation, and wandering exponents of solutions of differential systems”, Mathematical Notes, 99:5 (2016), 729–746 | DOI | DOI | MR | Zbl
[5] Burlakov D. S., Tsoii S. V., “Coincidence of complete and vector frequencies of solutions of a linear autonomous system”, Journal of Mathematical Sciences, 210:2 (2015), 155–167 | DOI | MR | Zbl
[6] Bykov V. V., “On the Baire classification of Sergeev frequencies of zeros and roots of solutions of linear differential equations”, Differential Equations, 52:4 (2016), 413–420 | DOI | DOI | MR | MR | Zbl
[7] Barabanov E. A., Voidelevich A. S., “Remark on the theory of Sergeev frequencies of zeros, signs, and roots for solutions of linear differential equations: I”, Differential Equations, 52:10 (2016), 1249–1267 | DOI | DOI | MR | Zbl
[8] Barabanov E. A., Voidelevich A. S., “Remark on the theory of Sergeev frequencies of zeros, signs, and roots for solutions of linear differential equations: II”, Differential Equations, 52:12 (2016), 1523–1538 | DOI | DOI | MR | Zbl
[9] Barabanov E. A., Vaidzelevich A. S., “Spectra of the upper Sergeev frequencies of zeros and signs of linear differential equations”, Doklady NAN Belarusi, 60:1 (2016), 24–31 (in Russian) | MR | Zbl
[10] Vaidzelevich A. S., “On spectra of upper Sergeev frequencies of linear differential equations”, Journal of the Belarusian State University. Mathematics and Informatics, 2019, no. 1, 28–32 (in Russian) | DOI | MR | Zbl
[11] Sergeev I. N., “A contribution to the theory of Lyapunov exponents for linear systems of differential equations”, Journal of Soviet Mathematics, 33:6 (1986), 1245–1292 | DOI | Zbl | Zbl
[12] Sergeev I. N., “Oscillation and wandering of solutions to a second order differential equation”, Moscow University Mathematics Bulletin, 66 (2011), 250–254 | DOI | MR | Zbl
[13] Stash A. Kh., “Some properties of oscillation indicators of solutions to a two-dimensional system”, Moscow University Mathematics Bulletin, 74 (2019), 202–204 | DOI | MR | Zbl
[14] Stash A. Kh., “The absence of residual property for strong exponents of oscillation of linear systems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 31:1 (2021), 59–69 (in Russian) | DOI | MR | Zbl
[15] Stash A. Kh., “The absence of residual property for total hyper-frequencies of solutions to third order differential equations”, Moscow University Mathematics Bulletin, 72 (2017), 81–83 | DOI | MR | Zbl
[16] Sergeev I. N., “Controlling solutions to a linear differential equation”, Moscow University Mathematics Bulletin, 64 (2009), 113–120 | DOI | MR | Zbl
[17] Filippov A. F., Introduction to the Theory of Differential Equations, Editorial URSS, M., 2004, 240 pp. (in Russian)