On functions of van der Waerden type
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 3, pp. 339-347

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\omega(t)$ be an arbitrary modulus of continuity type function, such that $\omega(t)/t\to+\infty$, as $t\to+0$. We construct a continuous nowhere-differentiable function $V_\omega(x)$, $x\in[0;1]$, that satisfies the following conditions: 1) its modulus of continuity satisfies the estimate $O(\omega(t))$ as $t\to+0$; 2) for some positive $c$ at each point $x_0$ holds $\limsup{|V_\omega(x){-}V_\omega(x_0)|}\big/{\omega(|x{-}x_0|)}>c$ as $x\to x_0$; 3) at each point $x_0$ holds $\liminf{|V_\omega(x){-}V_\omega(x_0)|}\big/{\omega(|x{-}x_0|)}=0$ as $x\to x_0$.
@article{ISU_2023_23_3_a4,
     author = {A. I. Rubinstein and D. S. Telyakovskii},
     title = {On functions of van der {Waerden} type},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {339--347},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a4/}
}
TY  - JOUR
AU  - A. I. Rubinstein
AU  - D. S. Telyakovskii
TI  - On functions of van der Waerden type
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2023
SP  - 339
EP  - 347
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a4/
LA  - ru
ID  - ISU_2023_23_3_a4
ER  - 
%0 Journal Article
%A A. I. Rubinstein
%A D. S. Telyakovskii
%T On functions of van der Waerden type
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2023
%P 339-347
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a4/
%G ru
%F ISU_2023_23_3_a4
A. I. Rubinstein; D. S. Telyakovskii. On functions of van der Waerden type. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 3, pp. 339-347. http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a4/