On functions of van der Waerden type
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 3, pp. 339-347.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\omega(t)$ be an arbitrary modulus of continuity type function, such that $\omega(t)/t\to+\infty$, as $t\to+0$. We construct a continuous nowhere-differentiable function $V_\omega(x)$, $x\in[0;1]$, that satisfies the following conditions: 1) its modulus of continuity satisfies the estimate $O(\omega(t))$ as $t\to+0$; 2) for some positive $c$ at each point $x_0$ holds $\limsup{|V_\omega(x){-}V_\omega(x_0)|}\big/{\omega(|x{-}x_0|)}>c$ as $x\to x_0$; 3) at each point $x_0$ holds $\liminf{|V_\omega(x){-}V_\omega(x_0)|}\big/{\omega(|x{-}x_0|)}=0$ as $x\to x_0$.
@article{ISU_2023_23_3_a4,
     author = {A. I. Rubinstein and D. S. Telyakovskii},
     title = {On functions of van der {Waerden} type},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {339--347},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a4/}
}
TY  - JOUR
AU  - A. I. Rubinstein
AU  - D. S. Telyakovskii
TI  - On functions of van der Waerden type
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2023
SP  - 339
EP  - 347
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a4/
LA  - ru
ID  - ISU_2023_23_3_a4
ER  - 
%0 Journal Article
%A A. I. Rubinstein
%A D. S. Telyakovskii
%T On functions of van der Waerden type
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2023
%P 339-347
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a4/
%G ru
%F ISU_2023_23_3_a4
A. I. Rubinstein; D. S. Telyakovskii. On functions of van der Waerden type. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 3, pp. 339-347. http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a4/

[1] Efimov A. V., “Linear methods of approximating continuous periodic functions”, Matematicheskii Sbornik. Novaya Seriya, 54(96):1 (1961), 51–90 (in Russian) | Zbl

[2] Bolzano B., “Functionenlehre”: Bolzano B., Petr K., Rychlik K., Bernard Bolzano's Schriften, v. 1, Královská česka společnost nauk v Praze, Praha, 1930, 80–184

[3] Takagi T., “A simple example of a continuos function without derivative”, Tokyo Sugaku-Butsurigakkwai Hokoku, 1 (1901), 176–177 | DOI

[4] van der Waerden B. L., “Ein einfaches Beispiel einer nicht-differenzierbaren stetigen Funktion”, Mathematische Zeitschrift, 32 (1930), 474–475 (in German) | DOI | MR

[5] Rubinshtein A. I., “On $\omega$-lacunary series and functions of the classes $H^{\omega}$”, Matematicheskii Sbornik. Novaya Seriya, 65(107):2 (1964), 239–271 (in Russian) | Zbl

[6] Weierstrass K., “Über continuirliche Functionen eines reellen Arguments, die für keinen Werth des letzeren einen bestimmten Differentialquotienten besitzen”, Ausgewählte Kapitel aus der Funktionenlehre, Vorlesung, gehalten in Berlin 1886 Mit der akademischen Antrittsrede, Berlin 1857, und drei weiteren Originalarbeiten von K. Weierstrass aus den Jahren 1870 bis 1880/86, Vieweg+Teubner Verlag, Wiesbaden, 1988, 190–193 (in German) | DOI | MR

[7] Telyakovskij D. S., “On monogeneity conditions”, Materials of the 21st International Saratov Winter School (Saratov, January 31 – February 4, 2022), Contemporary Problems of Function Theory and Their Applications, 21, Saratov State University Publ., Saratov, 2022, 289–293 (in Russian)

[8] Belov A. S., “Local properties of some functions in the Hölder class”, Russian Mathematics (Izvestiya VUZ. Matematika), 36:8 (1992), 10–17 | MR | Zbl

[9] Mishura Y., Schied A., “On (signed) Takagi – Landsberg functions: pth variation, maximum, and modulus of continuity”, Journal of Mathematical Analysis and Applications, 473:1 (2019), 258–272 | DOI | MR | Zbl

[10] Kaczmarz S., Steinhaus H., Theorie der Orthogonalreihen, Chelsea Publishing Company, 1951, 296 pp. | Zbl

[11] Rubinshtein A. I., “On a Set of Weakly Multiplicative Systems”, Mathematical Notes, 105:3 (2019), 473–477 | DOI | DOI | MR | Zbl

[12] Gaposhkin V. F., “On the convergence of series of weakly multiplicative systems of functions”, Mathematics of the USSR-Sbornik, 18:3 (1972), 361–372 | DOI | MR | MR | Zbl