Unitary extension principle on~zero-dimensional~locally~compact~groups
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 3, pp. 320-338.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we obtain methods for constructing step tight frames on an arbitrary locally compact zero-dimensional group. To do this, we use the principle of unitary extension. First, we indicate a method for constructing a step scaling function on an arbitrary zero-dimensional group. To construct the scaling function, we use an oriented tree and specify the conditions on the tree under which the tree generates the mask $m_0$ of a scaling function. Then we find conditions on the masks $m_0, m_1,\ldots , m_q$ under which the corresponding wavelet functions $\psi_1, \psi_2,\ldots ,\psi_q$ generate a tight frame. Using these conditions, we indicate a way of constructing such masks. In conclusion, we give examples of the construction of tight frames.
@article{ISU_2023_23_3_a3,
     author = {S. F. Lukomskii and Iu. S. Kruss},
     title = {Unitary extension principle on~zero-dimensional~locally~compact~groups},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {320--338},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a3/}
}
TY  - JOUR
AU  - S. F. Lukomskii
AU  - Iu. S. Kruss
TI  - Unitary extension principle on~zero-dimensional~locally~compact~groups
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2023
SP  - 320
EP  - 338
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a3/
LA  - ru
ID  - ISU_2023_23_3_a3
ER  - 
%0 Journal Article
%A S. F. Lukomskii
%A Iu. S. Kruss
%T Unitary extension principle on~zero-dimensional~locally~compact~groups
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2023
%P 320-338
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a3/
%G ru
%F ISU_2023_23_3_a3
S. F. Lukomskii; Iu. S. Kruss. Unitary extension principle on~zero-dimensional~locally~compact~groups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 3, pp. 320-338. http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a3/

[1] H. Zhao (ed.), Mathematics in Image Processing, IAS/Park City Mathematics Series, 19, 2013, 245 pp. | DOI | MR | Zbl

[2] Ron A., Shen Z., “Affine systems in $L_2(\mathbb R^d)$: The analysis of the analysis operator”, Journal of Functional Analysis, 148:2 (1997), 408–447 | DOI | MR | Zbl

[3] Farkov Y., Lebedeva E., Skopina M., “Wavelet frames on Vilenkin groups and their approximation properties”, International Journal of Wavelets, Multiresolution and Information Processing, 13:5 (2015), 1550036, 19 pp. | DOI | MR | Zbl

[4] Shah F. A., Debnath L., “Tight wavelet frames on local fields”, Analysis, 33:3 (2013), 293–307 | DOI | MR | Zbl

[5] Ahmad O., Bhat M. Y., Sheikh N. A., “Construction of Parseval framelets associated with GMRA on local fields of positive characteristic”, Numerical Functional Analysis and Optimization, 42:3 (2021), 344–370 | DOI | MR | Zbl

[6] Albeverio S., Evdokimov S., Skopina M., “$p$-adic multiresolution analysis and wavelet frames”, Journal of Fourier Analysis and Applications, 16 (2010), 693–714 | DOI | MR | Zbl

[7] Lukomskii S. F., “Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases”, Sbornik: Mathematics, 201:5 (2010), 669–691 | DOI | DOI | MR | Zbl

[8] Agaev G. N., Vilenkin N. Ya., Dzafarli G. M., Rubinstein A. I., Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups, Elm, Baku, 1981, 180 pp. (in Russian) | MR

[9] Albeverio S., Khrennikov A. Yu, Shelkovich V. M., Theory of $p$-adic Distributions: Linear and Nonlinear Models, Cambridge University Press, Cambridge, 2010, 351 pp. | DOI | MR | Zbl

[10] Lukomskii S. F., “Step refinable functions and orthogonal MRA on $p$-adic Vilenkin groups”, Journal of Fourier Analysis and Applications, 20:1 (2014), 42–65 | DOI | MR | Zbl

[11] Lukomskii S., Vodolazov A., $p$-adic tight wavelet frames, 12 mar. 2022 | DOI | MR