Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2023_23_3_a3, author = {S. F. Lukomskii and Iu. S. Kruss}, title = {Unitary extension principle on~zero-dimensional~locally~compact~groups}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {320--338}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a3/} }
TY - JOUR AU - S. F. Lukomskii AU - Iu. S. Kruss TI - Unitary extension principle on~zero-dimensional~locally~compact~groups JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2023 SP - 320 EP - 338 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a3/ LA - ru ID - ISU_2023_23_3_a3 ER -
%0 Journal Article %A S. F. Lukomskii %A Iu. S. Kruss %T Unitary extension principle on~zero-dimensional~locally~compact~groups %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2023 %P 320-338 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a3/ %G ru %F ISU_2023_23_3_a3
S. F. Lukomskii; Iu. S. Kruss. Unitary extension principle on~zero-dimensional~locally~compact~groups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 3, pp. 320-338. http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a3/
[1] H. Zhao (ed.), Mathematics in Image Processing, IAS/Park City Mathematics Series, 19, 2013, 245 pp. | DOI | MR | Zbl
[2] Ron A., Shen Z., “Affine systems in $L_2(\mathbb R^d)$: The analysis of the analysis operator”, Journal of Functional Analysis, 148:2 (1997), 408–447 | DOI | MR | Zbl
[3] Farkov Y., Lebedeva E., Skopina M., “Wavelet frames on Vilenkin groups and their approximation properties”, International Journal of Wavelets, Multiresolution and Information Processing, 13:5 (2015), 1550036, 19 pp. | DOI | MR | Zbl
[4] Shah F. A., Debnath L., “Tight wavelet frames on local fields”, Analysis, 33:3 (2013), 293–307 | DOI | MR | Zbl
[5] Ahmad O., Bhat M. Y., Sheikh N. A., “Construction of Parseval framelets associated with GMRA on local fields of positive characteristic”, Numerical Functional Analysis and Optimization, 42:3 (2021), 344–370 | DOI | MR | Zbl
[6] Albeverio S., Evdokimov S., Skopina M., “$p$-adic multiresolution analysis and wavelet frames”, Journal of Fourier Analysis and Applications, 16 (2010), 693–714 | DOI | MR | Zbl
[7] Lukomskii S. F., “Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases”, Sbornik: Mathematics, 201:5 (2010), 669–691 | DOI | DOI | MR | Zbl
[8] Agaev G. N., Vilenkin N. Ya., Dzafarli G. M., Rubinstein A. I., Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups, Elm, Baku, 1981, 180 pp. (in Russian) | MR
[9] Albeverio S., Khrennikov A. Yu, Shelkovich V. M., Theory of $p$-adic Distributions: Linear and Nonlinear Models, Cambridge University Press, Cambridge, 2010, 351 pp. | DOI | MR | Zbl
[10] Lukomskii S. F., “Step refinable functions and orthogonal MRA on $p$-adic Vilenkin groups”, Journal of Fourier Analysis and Applications, 20:1 (2014), 42–65 | DOI | MR | Zbl
[11] Lukomskii S., Vodolazov A., $p$-adic tight wavelet frames, 12 mar. 2022 | DOI | MR