Unitary extension principle on~zero-dimensional~locally~compact~groups
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 3, pp. 320-338

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we obtain methods for constructing step tight frames on an arbitrary locally compact zero-dimensional group. To do this, we use the principle of unitary extension. First, we indicate a method for constructing a step scaling function on an arbitrary zero-dimensional group. To construct the scaling function, we use an oriented tree and specify the conditions on the tree under which the tree generates the mask $m_0$ of a scaling function. Then we find conditions on the masks $m_0, m_1,\ldots , m_q$ under which the corresponding wavelet functions $\psi_1, \psi_2,\ldots ,\psi_q$ generate a tight frame. Using these conditions, we indicate a way of constructing such masks. In conclusion, we give examples of the construction of tight frames.
@article{ISU_2023_23_3_a3,
     author = {S. F. Lukomskii and Iu. S. Kruss},
     title = {Unitary extension principle on~zero-dimensional~locally~compact~groups},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {320--338},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a3/}
}
TY  - JOUR
AU  - S. F. Lukomskii
AU  - Iu. S. Kruss
TI  - Unitary extension principle on~zero-dimensional~locally~compact~groups
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2023
SP  - 320
EP  - 338
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a3/
LA  - ru
ID  - ISU_2023_23_3_a3
ER  - 
%0 Journal Article
%A S. F. Lukomskii
%A Iu. S. Kruss
%T Unitary extension principle on~zero-dimensional~locally~compact~groups
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2023
%P 320-338
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a3/
%G ru
%F ISU_2023_23_3_a3
S. F. Lukomskii; Iu. S. Kruss. Unitary extension principle on~zero-dimensional~locally~compact~groups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 3, pp. 320-338. http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a3/