Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2023_23_3_a2, author = {V. P. Kurdyumov}, title = {Classic and generalized solutions of the mixed problem for~wave~equation with a summable potential. {Part~I.~Classic~solution} of the mixed problem}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {311--319}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a2/} }
TY - JOUR AU - V. P. Kurdyumov TI - Classic and generalized solutions of the mixed problem for~wave~equation with a summable potential. Part~I.~Classic~solution of the mixed problem JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2023 SP - 311 EP - 319 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a2/ LA - ru ID - ISU_2023_23_3_a2 ER -
%0 Journal Article %A V. P. Kurdyumov %T Classic and generalized solutions of the mixed problem for~wave~equation with a summable potential. Part~I.~Classic~solution of the mixed problem %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2023 %P 311-319 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a2/ %G ru %F ISU_2023_23_3_a2
V. P. Kurdyumov. Classic and generalized solutions of the mixed problem for~wave~equation with a summable potential. Part~I.~Classic~solution of the mixed problem. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 3, pp. 311-319. http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a2/
[1] Naymark M. A., Linear Differential Operators, Nauka, M., 1969, 528 pp. (in Russian)
[2] Khromov A. P., “Mixed problem for homogeneous wave equation with non-zero initial velocity”, Computational Mathematics and Mathematical Physics, 58:9 (2018), 1531–1543 | DOI | DOI | MR | Zbl
[3] Kurdyumov V. P., Khromov A. P., Khalova V. A., “Mixed problem for a homogeneous wave equation with a nonzero initial velocity with summable potential”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 20:4 (2020), 444–456 (in Russian) | DOI | MR | Zbl
[4] Burlutskaya M. S., Khromov A. P., “Resolvent approach in the Fourier method”, Doklady Mathematics, 90:2 (2014), 545–548 | DOI | DOI | MR | Zbl
[5] Khromov A. P., “Behavior of the formal solution to a mixed problem for the wave equation”, Computational Mathematics and Mathematical Physics, 56:2 (2016), 243–255 | DOI | DOI | MR | Zbl
[6] Burlutskaya M. S., Khromov A. P., “Mixed problem for the wave equation with integrable potential in the case of two-point boundary conditions of distinct orders”, Differential Equations, 53:4 (2017), 497–508 | DOI | DOI | MR | Zbl
[7] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta Mathematica, 116:1 (1966), 135–157 | DOI | MR | Zbl
[8] Hunt R., “On the convergence of Fourier series”, Orthogonal Expansious and Their Continuous Analogues, Proceedings of the Conference (Southern Illinois University, Edwardsville, April 27–29, 1967), Southern Illinois University Press, Carbondale, JL, 1968, 235–255 | MR | Zbl
[9] Il'in V. A., “Existence of a reduced system of eigen- and associated functions for a nonselfadjoint ordinary differential operator”, Proceedings of the Steklov Institute of Mathematics, 142 (1979), 157–164 | Zbl
[10] Gurevich A. P., Kurdyumov V. P., Khromov A. P., “Justification of the Fourier method in a mixed problem for a wave equation with a nonzero initial velocity”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 16:1 (2016), 13–29 (in Russian) | DOI | MR | Zbl
[11] Rasulov M. L., Contour Integral Method, Nauka, M., 1964, 462 pp. (in Russian) | MR
[12] Vagabov A. I., Introduction to the Spectral Theory of Differential Operators, Rostov University Publ, Rostov-on-Don, 1994, 160 pp. (in Russian)