Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2023_23_2_a9, author = {I. V. Lutoshkin and M. S. Rybina}, title = {Optimal solution in the model of control over an economic system in the condition of a mass disease}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {264--273}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a9/} }
TY - JOUR AU - I. V. Lutoshkin AU - M. S. Rybina TI - Optimal solution in the model of control over an economic system in the condition of a mass disease JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2023 SP - 264 EP - 273 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a9/ LA - en ID - ISU_2023_23_2_a9 ER -
%0 Journal Article %A I. V. Lutoshkin %A M. S. Rybina %T Optimal solution in the model of control over an economic system in the condition of a mass disease %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2023 %P 264-273 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a9/ %G en %F ISU_2023_23_2_a9
I. V. Lutoshkin; M. S. Rybina. Optimal solution in the model of control over an economic system in the condition of a mass disease. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 2, pp. 264-273. http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a9/
[1] Kul'kova I. A., “The coronavirus pandemic influence on demographic processes in Russia”, Human Rrogress, 6:1 (2020), 2–11 (in Russian) | DOI
[2] Bobkov A. V., Vereshchagina V. K., “Correctional dynamics of economic activity under the influence of measures to control the pandemic”, Innovation and Investment, 8 (2020), 94–98 (in Russian)
[3] Funk S., Gilad E., Watkins C., Jansen V. A. A., “The spread of awareness and its impact on epidemic outbreaks”, Proceedings of the National Academy of Sciences, 106:16 (2009), 6872–6877 | DOI | Zbl
[4] Wani A. U., Bakshi A., Wani M. A., “Dynamics of COVID-19: Modelling and analysis”, Journal of Infectious Diseases and Epidemiology, 6 (2020), 1–11 | DOI
[5] Arino J., Brauer F., van den Driessche P., Watmough J., Wu J., “Simple models for containment of a pandemic”, Journal of the Royal Society Interface, 3:8 (2006), 453–457 | DOI
[6] Atkeson A., What will be the economic impact of Covid-19 in the US? Rough estimates of disease scenarios, NBER Working Papers No 26867, 2020 (accessed May 29, 2021) https://www.nber.org/system/files/working_papers/w26867/w26867.pdf
[7] Brauer F., Castillo-Chavez C., Mathematical Models in Population Biology and Epidemiology, Texts in Applied Mathematics, 40, Springer, New York, 2012, 508 pp. | DOI | MR | Zbl
[8] Britton N. F., Essential Mathematical Biology, Springer, London, 2003, 335 pp. | DOI | MR | Zbl
[9] Castillo-Chavez C., Blower S., van den Driessche P., Kirschner D., Yakubu A. A. (eds.), Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, The IMA Volumes in Mathematics and its Applications, 126, Springer, New York, 2002, 377 pp. | DOI | MR | Zbl
[10] He S., Tang S., Rong L., “A discrete stochastic model of COVID-19 outbreak: Forecast and control”, Mathematical Biosciences and Engineering, 17:4 (2020), 2792–2804 | DOI | MR | Zbl
[11] Volz E., Meyers L. A., “Susceptible-infected-recovered epidemics in dynamic contact networks”, Proceedings of the Royal Society B, 274:1628 (2007), 2925–2934 | DOI
[12] Matveev A. V., “The mathematical modeling of the effective measures against the COVID-19 spread”, National Security and Strategic Planning, 2020:1(29) (2020), 23–39 (in Russian) | DOI | MR
[13] Rybina M. S., “Mathematical model of optimal resource control in conditions of a pandemic”, Proceedings of the International Youth Scientific Forum “LOMONOSOV–2021”, 2021 (in Russian) (accessed May 29, 2021) https://lomonosov-msu.ru/archive/Lomonosov_2021/data/22519/127569_uid543558_report.pdf
[14] Rybina M. S., “The problem of estimating the parameters of the mathematical model of the impact of the pandemic on the economy”, Collection of Abstracts of the Congress of Young Scientists (ITMO University, 2021) (in Russian) (accessed May 29, 2021) https://kmu.itmo.ru/digests/article/7045
[15] Igret Araz S., “Analysis of a Covid-19 model: Optimal control, stability and simulations”, Alexandria Engineering Journal, 60:1 (2020), 647–658 | DOI | MR
[16] Macalisang J., Caay M., Arcede J., Caga-Anan R., “Optimal control for a COVID-19 model accounting for symptomatic and asymptomatic”, Computational and Mathematical Biophysics, 8 (2020), 168–179 | DOI | MR | Zbl
[17] Ovsyannikova N. I., “Problem of optimal control of epidemic in view of latent period”, Civil Aviation High Technologies, 20:2 (2017), 144–152
[18] Zamir M., Abdeljawad T., Nadeem F., Khan A., Yousef A., “An optimal control analysis of a COVID-19 model”, Alexandria Engineering Journal, 60:2 (2021), 2875–2884 | DOI
[19] Andreeva E. A., Semykina N. A., “Optimal control of the spread of an infectious disease with allowance for an incubation period”, Computational Mathematics and Mathematical Physics, 45:7 (2005), 1133–1139 | MR | Zbl
[20] Lutoshkin I. V., “The parameterization method for optimizing the systems which have integro-differential equations”, The Bulletin of Irkutsk State University. Series Mathematics, 4:1 (2011), 44–56 (in Russian) | Zbl
[21] Samarskiy A. A., Introduction to Numerical Methods, Lan', St. Petersburg, 2005, 288 pp. (in Russian) | MR