Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2023_23_1_a8, author = {Ya. G. Sapunkov and A. V. Molodenkov}, title = {The new algorithm of quasi-optimal reorientation of a spacecraft}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {95--112}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a8/} }
TY - JOUR AU - Ya. G. Sapunkov AU - A. V. Molodenkov TI - The new algorithm of quasi-optimal reorientation of a spacecraft JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2023 SP - 95 EP - 112 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a8/ LA - ru ID - ISU_2023_23_1_a8 ER -
%0 Journal Article %A Ya. G. Sapunkov %A A. V. Molodenkov %T The new algorithm of quasi-optimal reorientation of a spacecraft %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2023 %P 95-112 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a8/ %G ru %F ISU_2023_23_1_a8
Ya. G. Sapunkov; A. V. Molodenkov. The new algorithm of quasi-optimal reorientation of a spacecraft. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 1, pp. 95-112. http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a8/
[1] Scrivener S. L., Thompson R. C., “Survey of time-optimal attitude maneuvers”, Journal of Guidance, Control, and Dynamics, 17:2 (1994), 225–233 | DOI
[2] Branets V. N., Shmyglevskij I. P., The Use of Quaternions in Problems of Orientation of Solid Bodies, Nauka, M., 1973, 320 pp. (in Russian) | MR
[3] Junkins J. L., Turner J. D., Optimal Spacecraft Rotational Maneuvers, Elsevier, New York, 1986, 515 pp. | DOI
[4] Crassidis J. L., Markley F. L., Fundamentals of Spacecraft Attitude Determination and Control, Springer, New York, 2014, 486 pp. | DOI | MR
[5] Sapunkov Ya. G., Molodenkov A. V., “Numerical solution of the optimal spacecraft reorientation problem”, Mechatronics, Automation, Control, 2008, no. 6, 10–15
[6] Molodenkov A. V., Sapunkov Ya. G., “Analytical quasi-optimal solution of the problem of the time-optimal rotation of a spacecraft”, Journal of Computer and Systems Sciences International, 60:4 (2021), 639–653 | DOI | MR
[7] Sapunkov Ya. G., Molodenkov A. V., “Analytical solution of the problem on an axisymmetric spacecraft attitude maneuver optimal with respect to a combined functional”, Automation and Remote Control, 82:7 (2021), 1183–1200 | DOI | MR
[8] Akulenko L. D., Lilov L. K., “Synthesis of a quasi-optimal system of reorientation and stabilization of spacecraft”, Space Research, 28:2 (1990), 186–197 (in Russian)
[9] Boyarko G. A., Romano M., Yakimenko O. A., “Time-optimal reorientation of a spacecraft using an inverse dynamics optimization method”, Journal of Guidance, Control, and Dynamics, 34:4 (2011), 1197–1208 | DOI | MR
[10] Pontriagin L. S., Boltianskii V. G., Gamkrelidze R. V., Mishchenko E. F., The Mathematical Theory of Optimal Processes, Nauka, M., 1961, 391 pp. (in Russian) | MR
[11] Lastman G. J., “A shooting method for solving two-point boundary-value problems arising from non-singular bang-bang optimal control problems”, International Journal of Control, 27:4 (1978), 513–524 | DOI | MR
[12] Banit Yu. R., Belyaev M. Yu., Dobrinskaya T. A., Efimov N. L., Sazonov V. V., Stazhkov V. M., “Estimating the Inertia Tensor of the International Space Station on the Base of the Telemetry Information”, Keldysh Institute of Applied Mathematics of RAS preprints, 2002, 057 (in Russian)
[13] Molodenkov A. V., “On the solution of the Darboux problem”, Mechanics of Solids, 42:2 (2007), 167–176 | DOI
[14] Molodenkov A. V., Sapunkov Ya. G., “Analytical solution of the optimal slew problem of a spherically symmetric spacecraft in the class of conical motion”, Journal of Computer and Systems Sciences International, 52:3 (2013), 491–501 | DOI | MR
[15] Molodenkov A. V., Perelyaev S. E., “Solution of approximate equation for modified rodrigues vector and attitude algorithm design”, Journal of Guidance, Control, and Dynamics, 44:6 (2021), 1224–1227 | DOI