Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2023_23_1_a6, author = {N. A. Gureeva and R. Z. Kiseleva and Yu. V. Klochkov and A. P. Nikolaev and V. V. Ryabukha}, title = {On the physical equations of a deformable body at the loading step with implementation based on a mixed {FEM}}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {70--82}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a6/} }
TY - JOUR AU - N. A. Gureeva AU - R. Z. Kiseleva AU - Yu. V. Klochkov AU - A. P. Nikolaev AU - V. V. Ryabukha TI - On the physical equations of a deformable body at the loading step with implementation based on a mixed FEM JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2023 SP - 70 EP - 82 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a6/ LA - ru ID - ISU_2023_23_1_a6 ER -
%0 Journal Article %A N. A. Gureeva %A R. Z. Kiseleva %A Yu. V. Klochkov %A A. P. Nikolaev %A V. V. Ryabukha %T On the physical equations of a deformable body at the loading step with implementation based on a mixed FEM %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2023 %P 70-82 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a6/ %G ru %F ISU_2023_23_1_a6
N. A. Gureeva; R. Z. Kiseleva; Yu. V. Klochkov; A. P. Nikolaev; V. V. Ryabukha. On the physical equations of a deformable body at the loading step with implementation based on a mixed FEM. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 1, pp. 70-82. http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a6/
[1] Malinin N. N., Applied Theory of Plasticity and Creep, Mashinostroenie, M., 1975, 400 pp. (in Russian)
[2] Golovanov A. I., Sultanov L. U., Mathematical Models of Computational Nonlinear Mechanics of Deformable Media, Kazan State University Publ, Kazan, 2009, 464 pp. (in Russian)
[3] Petrov V. V., Nonlinear Incremental Building Mechanics, Infra-Inzheneriya, M., 2014, 480 pp. (in Russian)
[4] Bathe K. J., Finite Element Procedures, Prentice Hall, New Jersey, 1996, 1038 pp.
[5] Levin V. A., Nonlinear Computational Mechanics of Strength, v. 1, Models and Methods. Formation and Development of Defects, Fizmatlit, M., 2015, 456 pp. (in Russian)
[6] Golovanov A. I., Tiuleneva O. N., Shigabutdinov A. F., Finite Element Method in Statics and Dynamics of Thin-Walled Structures, Fizmatlit, M., 2006, 392 pp. (in Russian)
[7] Gureeva N. A., Arkov D. P., “Flat problem of theory of jump in base method of final elements in mixed understanding in account physical nonlinearity”, Bulletin of Higher Educational Institutions. North Caucasus Region. Natural Sciences, 2011, no. 2, 12–15 (in Russian)
[8] Samul' V. I., Fundamentals of the Theory of Elasticity and Plasticity, Vysshaya shkola, M., 1982, 264 pp. (in Russian)
[9] Demidov S. P., Theory of Elasticity, Vysshaya shkola, M., 1979, 432 pp. (in Russian)
[10] Gureeva N. A., Klochkov Yu. V., Nikolaev A. P., Yushkin V. N., “Stress-strain state of shell of revolution analysis by using various formulations of three-dimensional finite elements”, Structural Mechanics of Engineering Constructions and Buildings, 16:5 (2020), 361–379 | DOI