The Riemann problem on a ray for generalized analytic functions with a singular line
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 1, pp. 58-69

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study an inhomogeneous Riemann boundary value problem with a finite index and a boundary condition on a ray for a generalized Cauchy – Riemann equation with a singular coefficient. For the solution of this problem, we derived a formula for the general solution of the generalized Cauchy – Riemann equation under constraints that led to an infinite index of logarithmic order of the accompanying problem for analytical functions. We have obtained a formula for the general solution of the Riemann problem and conducted a complete study of the existence and the number of solutions of a boundary value problem for generalized analytic functions with a singular line.
@article{ISU_2023_23_1_a5,
     author = {P. L. Shabalin and R. R. Faizov},
     title = {The {Riemann} problem on a ray for generalized analytic functions with a singular line},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {58--69},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a5/}
}
TY  - JOUR
AU  - P. L. Shabalin
AU  - R. R. Faizov
TI  - The Riemann problem on a ray for generalized analytic functions with a singular line
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2023
SP  - 58
EP  - 69
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a5/
LA  - ru
ID  - ISU_2023_23_1_a5
ER  - 
%0 Journal Article
%A P. L. Shabalin
%A R. R. Faizov
%T The Riemann problem on a ray for generalized analytic functions with a singular line
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2023
%P 58-69
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a5/
%G ru
%F ISU_2023_23_1_a5
P. L. Shabalin; R. R. Faizov. The Riemann problem on a ray for generalized analytic functions with a singular line. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 1, pp. 58-69. http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a5/