Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2023_23_1_a5, author = {P. L. Shabalin and R. R. Faizov}, title = {The {Riemann} problem on a ray for generalized analytic functions with a singular line}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {58--69}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a5/} }
TY - JOUR AU - P. L. Shabalin AU - R. R. Faizov TI - The Riemann problem on a ray for generalized analytic functions with a singular line JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2023 SP - 58 EP - 69 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a5/ LA - ru ID - ISU_2023_23_1_a5 ER -
%0 Journal Article %A P. L. Shabalin %A R. R. Faizov %T The Riemann problem on a ray for generalized analytic functions with a singular line %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2023 %P 58-69 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a5/ %G ru %F ISU_2023_23_1_a5
P. L. Shabalin; R. R. Faizov. The Riemann problem on a ray for generalized analytic functions with a singular line. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 1, pp. 58-69. http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a5/
[1] Vekua I. N., Generalized Analytic Functions, Nauka, M., 1988, 507 pp. (in Russian)
[2] Mikhailov L. G., New Classes of Singular Integral Equations and Their Application to Differential Equations with Singular Coefficients, TadjikNIINTI, Dushanbe, 1963, 183 pp. (in Russian) | MR
[3] Radzhabov N. R., Integral Representations and Boundary Value Problems for Some Differential Equations with Singular Line or Singular Surfaces, v. 1, Tadzhikskiy gosuniversitet Publ., Dushanbe, 1980, 147 pp. (in Russian)
[4] Radzhabov N. R., Integral Representations and Boundary Value Problems for Some Differential Equations with Singular Line or Singular Surfaces, v. 2, Tadzhikskiy gosuniversitet Publ., Dushanbe, 1981, 170 pp. (in Russian)
[5] Radzhabov N. R., “Integral representations and boundary value problems for the generalized Cauchy – Riemann system with a singular line”, Doklady Akademii Nauk SSSR, 267:2 (1982), 300–305 (in Russian) | MR
[6] Radzhabov N. R., Rasulov A. B., “Integral representations and boundary value problems for a class of systems of differential equations of elliptic type with singular manifolds”, Differentsial'nye Uravneniya, 25:7 (1989), 1279–1981 (in Russian) | MR
[7] Usmanov Z. D., Generalized Cauchy – Riemann Systems with a Singular Point, Routledge, New York, 1997, 232 pp. | DOI | MR
[8] Begehr H., Dao-Qing Dai, “On continuous solutions of a generalized Cauchi – Riemann system with more than one singularity”, Journal of Differential Equations, 196:1 (2004), 67–90 | DOI | MR
[9] Meziani A., “Representation of solutions of a singular CR equation in the plane”, Complex Variables and Elliptic Equations, 53:12 (2008), 1111–1130 (accessed 2 August 2022) https://www.tandfonline.com/doi/abs/10.1080/17476930802509239 | DOI | MR
[10] Rasulov A. B., “Representation of the variety of solutions and investigation of the boundary value problems for some generalized Cauchy – Riemann systems with one and two singular lines”, Izvestiya AN Tadzh. SSR. Seriia fiziko-matematicheskikh, khimicheskikh i geologicheskikh nauk, 1982, no. 2 (84), 23–32 (in Russian)
[11] Rasulov A. B., Soldatov A. P., “Boundary value problem for a generalized Cauchy – Riemann equation with singular coefficients”, Differential Equations, 52:5 (2016), 616–629 | DOI | MR
[12] Fedorov Iu. S., Rasulov A. B., “Hilbert type problem for a Cauchy – Riemann equation with singularities on a circle and at a point in the lower-order coefficients”, Differential Equations, 57:1 (2021), 127–131 | DOI | DOI | MR
[13] Rasulov A. B., “The Riemann problem on a semicircle for a generalized Cauchy – Riemann system with a singular line”, Differential Equations, 40:9 (2004), 1364–1366 | DOI | MR
[14] Rasulov A. B., “Integral representations and the linear conjugation problem for a generalized cauchy-riemann system with a singular manifold”, Differential Equations, 36:2 (2000), 306–312 | DOI | MR
[15] Govorov N. V., Riemann's Boundary Problem with Infinite Index, Operator Theory: Advances and Applications, 67, Birkhauser Basel, Berlin, 1994, 263 pp. | DOI | MR
[16] Monakhov V. N., Semenko E. V., Boundary Value Problems and Pseudodifferential Operators on Riemann Surfaces, Fizmatlit, M., 2003, 416 pp. (in Russian)
[17] Ostrovskii I. V., “Homogeneous Riemann boundary value problem with infinite index on a curved contour”, Theory of Functions, Functional Analysis and Their Applications, 1991, no. 56, 95–105 (in Russian)
[18] Yurov P. G., “Inhomogeneous Riemann boundary value problem with infinite index of logarithmic order $\alpha\geq1$”, Materials of the All-Union Conference on Boundary Value Problems, Kazan State University Publ, Kazan, 1970, 279–284 (in Russian)
[19] Yurov P. G., “The homogeneous Riemann boundary value problem with an infinite index of logarithmic type”, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1966, no. 2, 158–163
[20] Salimov R. B., Khasanova E. N., “The solution of the homogeneous boundary value problem of Riemann with infinite index of logarithmic order on the beam by a new method”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 17:2 (2017), 160–171 (in Russian) | DOI