Function correction and Lagrange -- Jacobi type interpolation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 1, pp. 24-35

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well-known that the Lagrange interpolation based on the Chebyshev nodes may be divergent everywhere (for arbitrary nodes, almost everywhere), like the Fourier series of a summable function. On the other hand, any measurable almost everywhere finite function can be “adjusted” in a set of an arbitrarily small measure such that its Fourier series will be uniformly convergent. The question arises whether the class of continuous functions has a similar property with respect to any interpolation process. In the present paper, we prove that there exists the matrix of nodes $\mathfrak{M}_\gamma$ arbitrarily close to the Jacoby matrix $\mathfrak{M}^{(\alpha,\beta)}$, $\alpha,\beta>-1$ with the following property: any function $f\in{C[-1,1]}$ can be adjusted in a set of an arbitrarily small measure such that interpolation process of adjusted continuous function $g$ based on the nodes $\mathfrak{M}_\gamma$ will be uniformly convergent to $g$ on $[a,b]\subset(-1,1)$.
@article{ISU_2023_23_1_a2,
     author = {V. V. Novikov},
     title = {Function correction and {Lagrange} -- {Jacobi} type interpolation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {24--35},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a2/}
}
TY  - JOUR
AU  - V. V. Novikov
TI  - Function correction and Lagrange -- Jacobi type interpolation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2023
SP  - 24
EP  - 35
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a2/
LA  - ru
ID  - ISU_2023_23_1_a2
ER  - 
%0 Journal Article
%A V. V. Novikov
%T Function correction and Lagrange -- Jacobi type interpolation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2023
%P 24-35
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a2/
%G ru
%F ISU_2023_23_1_a2
V. V. Novikov. Function correction and Lagrange -- Jacobi type interpolation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 1, pp. 24-35. http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a2/