Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2023_23_1_a0, author = {M. V. Balashov}, title = {The {Lezanski} -- {Polyak} -- {Lojasiewicz} inequality and the convergence of~the~gradient projection algorithm}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {4--10}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a0/} }
TY - JOUR AU - M. V. Balashov TI - The Lezanski -- Polyak -- Lojasiewicz inequality and the convergence of~the~gradient projection algorithm JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2023 SP - 4 EP - 10 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a0/ LA - en ID - ISU_2023_23_1_a0 ER -
%0 Journal Article %A M. V. Balashov %T The Lezanski -- Polyak -- Lojasiewicz inequality and the convergence of~the~gradient projection algorithm %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2023 %P 4-10 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a0/ %G en %F ISU_2023_23_1_a0
M. V. Balashov. The Lezanski -- Polyak -- Lojasiewicz inequality and the convergence of~the~gradient projection algorithm. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 1, pp. 4-10. http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a0/
[1] Lee J. M., Manifolds and differential geometry, Graduate Studies in Mathematics, 107, AMS Providence, Rhode Island, 2009, 671 pp. | DOI | MR
[2] Lojasiewicz S., “Sur le probléme de la division”, Studia Mathematica, 18 (1959), 87–136 | DOI | MR
[3] Balashov M. V., Polyak B. T., Tremba A. A., “Gradient projection and conditional gradient methods for constrained nonconvex minimization”, Numerical Functional Analysis and Optimization, 41:7 (2020), 822–849 | DOI | MR
[4] Karimi H., Nutini J., Schmidt M., “Linear convergence of gradient and proximal-gradient methods under the Polyak – Lojasiewicz condition”, Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2016, Lecture Notes in Computer Science, 9851, eds. Frasconi P., Landwehr N., Manco G., Vreeken J., Springer, Cham, 2016, 795–811 | DOI
[5] Schneider R., Uschmajew A., “Convergence results for projected line-search methods on varieties of low-rank matricies via Lojasiewicz inequality”, SIAM Journal on Optimization, 25:1 (2015), 622–646 | DOI | MR
[6] Merlet B., Nguyen T. N., “Convergence to equilibrium for discretizations of gradient-like flows on Riemannian manifolds”, Differential Integral Equations, 26:5/6 (2013), 571–602 | DOI | MR
[7] Vial J.-Ph., “Strong and weak convexity of sets and functions”, Mathematics of Operations Research, 8:2 (1983), 231–259 | DOI | MR
[8] Balashov M. V., “The gradient projection algorithm for smooth sets and functions in nonconvex case”, Set-Valued and Variational Analysis, 29 (2021), 341–360 | DOI | MR
[9] Balashov M. V., “Stability of minimization problems and the error bound condition”, Set-Valued and Variational Analysis, 30 (2022), 1061–1076 | DOI | MR
[10] Ivanov G. E., Weakly Convex Sets and Functions: Theory and Application, Fizmatlit, M., 2006, 351 pp. (in Russian) | MR
[11] Balashov M. V., Kamalov R. A., “The gradient projection method with Armijo's step size on manifolds”, Computational Mathematics and Mathematical Physics, 61:1 (2021), 1776–1786 | DOI | MR
[12] Adly S., Nacry F., Thibault L., “Preservation of prox-regularity of sets with applications to constrained optimization”, SIAM Journal on Optimization, 26:1 (2016), 448–473 | DOI | MR
[13] Polyak B. T., Introduction to Optimization, Optimization Software, New York, 1987, 464 pp. | MR
[14] Balashov M. V., Tremba A. A., “Error bound conditions and convergence of optimization methods on smooth and proximally smooth manifolds”, Optimization: A Journal of Mathematical Programming and Operations Research, 71:3 (2020), 711–735 | DOI | MR