Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_4_a7, author = {A. V. Dol and D. V. Ivanov and E. S. Olenko and N. V. Ostrovsky}, title = {Impeller flowmeters as a tool for assessing blood flow in~an~experimental test bench}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {506--516}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a7/} }
TY - JOUR AU - A. V. Dol AU - D. V. Ivanov AU - E. S. Olenko AU - N. V. Ostrovsky TI - Impeller flowmeters as a tool for assessing blood flow in~an~experimental test bench JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 506 EP - 516 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a7/ LA - ru ID - ISU_2022_22_4_a7 ER -
%0 Journal Article %A A. V. Dol %A D. V. Ivanov %A E. S. Olenko %A N. V. Ostrovsky %T Impeller flowmeters as a tool for assessing blood flow in~an~experimental test bench %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 506-516 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a7/ %G ru %F ISU_2022_22_4_a7
A. V. Dol; D. V. Ivanov; E. S. Olenko; N. V. Ostrovsky. Impeller flowmeters as a tool for assessing blood flow in~an~experimental test bench. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 4, pp. 506-516. http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a7/
[1] Ivanova Y. F., Yukhnev A. D., Gataulin Y. A., Smirnov E. M., Vrabiy A. A., Vavilov V. N., “Numerical and experimental study of the 3D flow in a graft-artery junction model”, Journal of Physics: Conference Series, 1675:2020 (2020), 012003 | DOI
[2] Drayson O., Bernardini N., Abderrahaman A. B., Cerquetani L., Cipolletta A., Ferrer B. D., Falcone F., Gabetti S., Genoni M., Torta E., Vagnone F., Aguzzi M., Audas C., Compin M., Favier J.-J, Lizy-Destrez S., Morbiducci U., “AIM (Artery in microgravity): An ICE cubes mission by university students”, Proceedings of the 3rd Symposium on Space Educational Activities, University of Leicester, UK, 2019, 109–113 | DOI
[3] Levesque J., Hermawan H., Dube D., Mantovani D., “Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials”, Acta Biomaterialia, 4:2 (2008), 284–295 | DOI
[4] Sindeev S. V., Frolov S. V., Liepsch D., “Experimental setups for studies of blood flow in arteries of cardiovascular system”, Voprosy sovremennoi nauki i praktiki. Universitet im. V. I. Vernadskogo, 2017, no. 4 (66), 231–236 | DOI
[5] Elliott W., Scott-Drechsel D., Tan W., “In vitro model of physiological and pathological blood flow with application to investigations of vascular cell remodeling”, Journal of Visualized Experiments, 3:105 (2015), e53224 | DOI
[6] Dol A. V., Ivanov D. V., Bakhmetev A. S., Kireev S. I., Maystrenko D. N., Gudz A. A., “Influence of the internal carotid arteries stenosis on the hemodynamics of the circle of Willis communicating arteries: A numerical study”, Russian Journal of Biomechanics, 25:4 (2021), 305–316 | DOI
[7] Pugovkin A. A., Selishchev S. V., Telyshev D. V., “Simulator for modeling the cardiovascular system for testing circulatory assist devices”, Biomedical Engineering, 49:4 (2015), 213–216 | DOI
[8] Ivanov D. V., Dol A. V., Biomechanical Modeling, Amirit, Saratov, 2021, 250 pp. (in Russian)
[9] Loitsyansky L. G., Mechanics of Liquid and Gas, Nauka, M., 1973, 847 pp. (in Russian)
[10] Schäfer M., “Finite-Volume Methods for Incompressible Flows”: Schäfer M., Computational Engineering – Introduction to Numerical Methods, Springer, Cham, 2022, 247–282 | DOI