Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_4_a6, author = {A. D. Tebyakin and A. V. Krysko and M. V. Zhigalov and V. A. Krysko}, title = {Elastic-plastic deformation of nanoplates. {The} method of~variational iterations (extended {Kantorovich} method)}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {494--505}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a6/} }
TY - JOUR AU - A. D. Tebyakin AU - A. V. Krysko AU - M. V. Zhigalov AU - V. A. Krysko TI - Elastic-plastic deformation of nanoplates. The method of~variational iterations (extended Kantorovich method) JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 494 EP - 505 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a6/ LA - ru ID - ISU_2022_22_4_a6 ER -
%0 Journal Article %A A. D. Tebyakin %A A. V. Krysko %A M. V. Zhigalov %A V. A. Krysko %T Elastic-plastic deformation of nanoplates. The method of~variational iterations (extended Kantorovich method) %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 494-505 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a6/ %G ru %F ISU_2022_22_4_a6
A. D. Tebyakin; A. V. Krysko; M. V. Zhigalov; V. A. Krysko. Elastic-plastic deformation of nanoplates. The method of~variational iterations (extended Kantorovich method). Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 4, pp. 494-505. http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a6/
[1] Kiener D., Motz C., Schobert T., Jenko M., Dehm G., “Determination of mechanical properties of copper at the micron scale”, Advanced Engineering Materials, 8:11 (2006), 1119–1125 | DOI
[2] Huber N., Nix W., Gao H., “Identification of elastic-plastic material parameters from pyramidal indentation of thin films”, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 458 (2002), 1593–1620 | DOI
[3] Ristinmaa M., Vecchi M., “Use of couple-stress theory in elasto-plasticity”, Computer Methods in Applied Mechanics and Engineering, 136:3–4 (1996), 205–224 | DOI | MR
[4] Darvishvand A., Zajkani A., “Strain gradient micromechanical modeling of substrate- supported crystalline microplates subjected to permanent in-plane and out-of-plane tractions”, Mechanics Based Design of Structures and Machines, 2021, no. 7, 969–985 | DOI
[5] Darvishvand A., Zajkani A., “Comparative modeling of power hardening micro-scale metallic plates based on lower and higher-order strain gradient plasticity theories”, Metals and Materials International, 27:6 (2021), 1392–1402 | DOI
[6] Tun M. A., “Plastic buckling of moderately thick annular plates”, International Journal of Structural Stability and Dynamics, 5:3 (2005), 337–357 | DOI
[7] Lanzoni L., Radi E., Nobili A., “Ultimate carrying capacity of elastic-plastic plates on a Pasternak foundation”, Journal of Applied Mechanics, 81:5 (2014), 051013, 9 pp. | DOI
[8] Schunck T. E., “Zur Knickfestigkeit schwach gekrümmter zylindrischer Schalen”, Ingenieur-Archiv, 4 (1933), 394–414 (in German) | DOI
[9] Zhukov E. E., “Variational method of successive approximations to the calculation of thin rectangular plates”, Calculation of Thin-Walled Spatial Structures, ed. A. P. Rzhanitsyn, Stroyizdat, M., 1964, 27–35 (in Russian)
[10] Kerr A. D., “An extended Kantorovich method for solution of eigenvalue problem”, International Journal of Solids and Structures, 5:6 (1969), 559–572 | DOI
[11] Yuan S., Jin Y., “Computation of elastic buckling loads of rectangular thin plates using the extended Kantorovich method”, Composite Structures, 66:6 (1998), 861–867 | DOI
[12] Shufrin I., Rabinovitch O., Eisenberger M., “Buckling of symmetrically laminated rectangular plates with general boundary conditions — a semi analytical approach”, Composite Structures, 82:4 (2008), 521–537 | DOI
[13] Eisenberger M., Shufrin I., “The extended Kantorovich method for vibration analysis of plates”, Analysis and Design of Plated Structures, v. 1, Stability, eds. N. E. Shanmugam, Chieng Ming Wang, Woodhead Publishing, Cambridge, 2007, 192–218 | DOI
[14] Awrejcewicz J., Krysko-jr. V. A., Kalutsky L. A., Zhigalov M. V., Krysko V. A., “Review of the methods of transition from partial to ordinary differential equations: from macro- to nano-structural dynamics”, Archives of Computational Methods in Engineering, 28 (2021), 4781–4813 | DOI | MR
[15] Kirichenko V. F., Krysko V. A., “Method of variational iterations in the theory of plates and its substantiation”, Applied Mechanics, 17:4 (1981), 71–76 (in Russian) | MR
[16] Krysko A. V., Awrejcewicz J., Zhigalov M. V., Krysko V. A., “On the contact interaction between two rectangular plates”, Nonlinear Dynamics, 85 (2016), 2729–2748 | DOI
[17] Awrejcewicz J., Krysko V. A., Zhigalov M. V., Krysko A. V., “Contact interaction of two rectangular plates made from different materials with an account of physical non-linearity”, Nonlinear Dynamics, 91 (2018), 1191–1211 | DOI
[18] Awrejcewicz J., Krysko-jr V. A., Kalutsky L. A., Krysko V. A., “Computing static behavior of flexible rectangular von Karman plates in fast and reliable way”, International Journal of Non-Linear Mechanics, 146 (2022), 104162 | DOI
[19] Awrejcewicz J., Krysko A. V., Smirnov A., Kalutsky L. A., Zhigalov M. V., Krysko V. A., “Mathematical modeling and methods of analysis of generalized functionally gradient porous nanobeams and nanoplates subjected to temperature field”, Meccanica, 57 (2022), 1591–1616 | DOI | MR
[20] Yang F., Chong A. C. M., Lam D. C. C., Tong P., “Couple stress based strain gradient theory for elasticity”, International Journal of Solids and Structures, 39:10 (2002), 2731–2743 | DOI
[21] Vorovich I. I., Krasovsky Yu. P., “On the method of elastic solutions”, Doklady Mathematics, 126:4 (1959), 740–743 (in Russian)
[22] Prandtl L., “Ein Gedankenmodell zur kinetischen Theorie der festen Körper”, ZAMM: Zeitschrift Für Angewandte Mathematik Und Mechanik, 8:2 (1928), 85–106 (in German) | DOI
[23] Ohashi Y., Murakami S., “The elasto-plastic bending of a clamped thin circular plate”, Applied Mechanics, v. 1, ed. H. Görtler, Springer, Berlin–Heidelberg, 1966, 212–223 | DOI
[24] Temperature coefficient of linear expansion of steel, Thermalinfo (in Russian) (accessed 3 August 2022)
[25] Birger I. A., “Some general methods for solving problems in the theory of plasticity”, Applied Mathematics and Mechanics, 15:6 (1951), 765–770 (in Russian) | MR
[26] Kantorovich L. V., Krylov V. I., Approximate Methods of Higher Analysis, Fizmatgiz, M., 1962, 708 pp. (in Russian) | MR
[27] Vlasov V. V., General Shell Theory, Gostekhizdat, M., 1949, 784 pp. (in Russian) | MR
[28] Weindiner A. I., “On a new form of Fourier series and the choice of the best Fourier polynomials”, Computational Mathematics and Mathematical Physics, 7:1 (1967), 240–251 | DOI | DOI | MR