Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_4_a4, author = {G. N. Belostochny and S. A. Grigoriev and L. Yu. Kossovich and O. A. Myltcina}, title = {Dynamic thermal stability of a geometrically irregular shallow shell of constant torsion under the action of a load periodic by~its~time coordinate}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {468--478}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a4/} }
TY - JOUR AU - G. N. Belostochny AU - S. A. Grigoriev AU - L. Yu. Kossovich AU - O. A. Myltcina TI - Dynamic thermal stability of a geometrically irregular shallow shell of constant torsion under the action of a load periodic by~its~time coordinate JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 468 EP - 478 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a4/ LA - ru ID - ISU_2022_22_4_a4 ER -
%0 Journal Article %A G. N. Belostochny %A S. A. Grigoriev %A L. Yu. Kossovich %A O. A. Myltcina %T Dynamic thermal stability of a geometrically irregular shallow shell of constant torsion under the action of a load periodic by~its~time coordinate %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 468-478 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a4/ %G ru %F ISU_2022_22_4_a4
G. N. Belostochny; S. A. Grigoriev; L. Yu. Kossovich; O. A. Myltcina. Dynamic thermal stability of a geometrically irregular shallow shell of constant torsion under the action of a load periodic by~its~time coordinate. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 4, pp. 468-478. http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a4/
[1] Zhilin P. A., “The linear theory of ribbed shells”, Mechanics of Solids, 1970, no. 4, 150–162 (in Russian)
[2] Belostochnyi G. N., Ul'yanova O. I., “Continuum model for a composition of shells of revolution with thermosensitive thickness”, Mechanics of Solids, 46:2 (2011), 184–191 | DOI
[3] Belostochnyi G. N., Rusina E. A., “Shells and geometrically irregular plates with heat-sensitive thickness”, Doklady Rossiiskoy Akademii Estestvennykh Nauk, 1999, no. 1, 28–37 (in Russian)
[4] Nazarov A. A., Fundamentals of the Theory and Methods for Designing Shallow Shells, Strojizdat, L.–M., 1965, 302 pp. (in Russian)
[5] Rassudov V. M., “Deformations of gently sloping shells supported by stiffeners”, Uchenye Zapiski Saratovskogo Universiteta, 52, iss. Mechanical (1956), 51–91 (in Russian)
[6] Belostochny G. N., Myltcina O. A., “Dynamic thermal stability of heated geometrically irregular cylindrical shell under the influence of a periodic temporal coordinate load”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 24:3 (2020), 583–594 (in Russian) | DOI
[7] Ogibalov P. M., Problems in Dynamics and Stability of Shells, Moscow University Press, M., 1963, 417 pp. (in Russian)
[8] Ogibalov P. M., Gribanov V. F., Thermal Stability of Plates and Shells, Moscow University Press, M., 1958, 520 pp. (in Russian)
[9] Belostochny G. N., “Analytical methods for determination of closed integrals of singular differential equations of thermoelasticity of geometrically irregular shells”, Doklady Akademii Voennykh Nauk, 1999, no. 1, 14–25 (in Russian)
[10] Belostochny G. N., Rusina E. A., “Dynamic thermal stability of transversal-isotropic plates under the action of periodic loads”, Modern Problems of Nonlinear Mechanics of Structures Interacting with Aggressive Media, SSTU Publ., Saratov, 2000, 175–180 (in Russian)
[11] Belostochny G. N., Tsvetkova O. A., “Geometrically irregular plates under the action of a time-periodic temperature field”, Problems of Strength of Structural Elements Under the Influence of Loads and Working Media, SSTU Publ., Saratov, 2002, 64–72 (in Russian)
[12] Myltcina O. A., Polienko A. V., Belostochny G. N., “Dynamic stability of heated geometrically irregular plates on the basis of the Reisner model”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 21:4 (2017), 760–772 (in Russian) | DOI
[13] Stoker J. J., Nonlinear Vibrations in Mechanical and Electrical Sistems, Wiley Classics Library, New York, Wiley, 1992, 296 pp. | MR
[14] Bolotin V. V., The Dynamic Stability of Elastic Systems, Holden-Day Series in Mathmatical Physics, Holden-day, San Francisco–London–Amsterdam, 1964, 452 pp. | MR
[15] Timoshenko S. P., Vibration Problems in Engineering, Constable, London, 1937, 497 pp.
[16] Filippov A. P., Methods of Calculating Structures for Vibrations, Gosstroyizdat, M.–L., 1940, 230 pp. (in Russian)
[17] Timoshenko S. P., Stability of Elastic Systems, OGIZ – Gostekhizdat, M.–L., 1946, 532 pp. (in Russian) | MR
[18] Ambartsumian S. A., Theory of Anisotropic Plates, Nauka, M., 1967, 266 pp. (in Russian) | MR
[19] Bessonov L. V., “Numerical implementation of method of subsequent perturbation of parameters for computation of stress-strain state of a shell rigidly fixed on the boundaries”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 15:1 (2015), 74–79 (in Russian) | DOI