Representation of Green's functions of the wave equation on~a~segment in finite terms
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 4, pp. 430-446.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solutions of initial-boundary value problems on the excitation of oscillations of a finite segment by an instantaneous point sourse are investigated. Solutions to these problems, called Green's functions of the equation of oscillations on a segment, are known in the form of infinite Fourier series or series in terms of Heaviside functions. A. N. Krylov's method of accelerating the convergence of Fourier series for several types of boundary conditions not only accelerates the convergence, but allows one to compose expressions for Green's functions in finite terms. In this paper, finite expressions of Green's functions are given in the form of elementary functions of a real variable. Four different formulations of boundary conditions are considered, including the periodicity conditions.
@article{ISU_2022_22_4_a1,
     author = {K. Yu. Malyshev},
     title = {Representation of {Green's} functions of the wave equation on~a~segment in finite terms},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {430--446},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a1/}
}
TY  - JOUR
AU  - K. Yu. Malyshev
TI  - Representation of Green's functions of the wave equation on~a~segment in finite terms
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2022
SP  - 430
EP  - 446
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a1/
LA  - ru
ID  - ISU_2022_22_4_a1
ER  - 
%0 Journal Article
%A K. Yu. Malyshev
%T Representation of Green's functions of the wave equation on~a~segment in finite terms
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2022
%P 430-446
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a1/
%G ru
%F ISU_2022_22_4_a1
K. Yu. Malyshev. Representation of Green's functions of the wave equation on~a~segment in finite terms. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 4, pp. 430-446. http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a1/

[1] Kurant R., Gilbert D., Methods of Mathematical Physics, v. 1, GTTI, M.–L., 1933, 525 pp. (in Russian) | MR

[2] Strutt J. W., The Theory of Sound, in 2 vols, v. 1, Dover Poblications, New York, 1945, 520 pp. | MR

[3] Sveshnikov A. G., Bogolyubov A. N., Kravtsov A. V., Lectures on Mathematical Physics, Nauka, M., 2004, 416 pp. (in Russian) | MR

[4] Dolya P. G., “Periodic continuation of functions and solution of the equation of string vibrations in systems of symbolic mathematics”, Bulletin of Kharkov National University. Series: Mathematical Modeling. Information Technology. Automated Control Systems, 2006, no. 733, 106–116 (in Russian)

[5] Dolya P. G., “Solution to the homogeneous boundary value problems of free vibrations of a finite string”, Journal of Mathematical Physics, Analysis, Geometry, 4:2 (2008), 237–251 | MR

[6] Larin A. A., “The origin of mathematical physics and the theory of oscillations of continuum systems in the “Dispute about the string””, Bulletin of the National Technical University “Kharkov Polytechnic Institute”. History of Science and Technology, 2008, no. 8, 89–97 (in Russian)

[7] Gavrilov V. S., Denisova N. A., Method of Characteristics for One-Dimensional Wave Equation, Lobachevsky State University of Nizhny Novgorod Publ., Nizhny Novgorod, 2014, 72 pp. (in Russian)

[8] Markushevich A. I., Elements of the Theory of Analytic Functions, Uchpedgiz, M., 1944, 545 pp. (in Russian) | MR

[9] Bronstein M., Symbolic Integration I. Transcendental Functions, Second Edition, Springer, 2005, 325 pp. | MR

[10] Pavlov D. I., “Symbolic integration”, Computer Tools in Education, 2010, no. 2, 38–43 (in Russian)

[11] Liouville J., “Mémoire sur l'intégration d'une classe de fonctions transcendantes”, Journal für die reine und angewandte Mathematik, 13:2 (1835), 93–118 (in German) | DOI | MR

[12] Il'in V. A., Poznyak È. G., Fundamentals of Mathematical Analysis, v. 1, Fizmatlit, M., 2005, 648 pp. (in Russian) | MR

[13] Krylov A. N., On Some Differential Equations of Mathematical Physics, GITTL, M.–L., 1950, 368 pp. (in Russian) | MR

[14] Khromov A. P., Burlutskaya M. S., “Classical solution by the Fourier method of mixed problems with minimum requirements on the initial data”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 14:2 (2014), 171–198 (in Russian) | DOI

[15] Kantorovich L. V., Krylov V. I., Approximate Methods of Higher Analysis, GITTL, M.–L., 1950, 696 pp. (in Russian) | MR

[16] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, v. 1, Fizmatlit, M., 2002, 632 pp. (in Russian) | MR

[17] Polyanin A. D., Handbook of Linear Equations of Mathematical Physics, Fizmatlit, M., 2001, 576 pp. (in Russian)

[18] Budak B. M., Samarskiy A. A., Tikhonov A. N., Collection of Problems in Mathematical Physics, Nauka, M., 1972, 688 pp. (in Russian) | MR

[19] Lasy P. G., Meleshko I. N., “Approximate solution of one problem on electrical oscillations in wires with the use of polylogarithms”, ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations, 60:4 (2017), 334–340 (in Russian) | DOI

[20] Lasy P. G., Meleshko I. N., “Application of Polylogarithms to the Approximate Solution of the Inhomogeneous Telegraph Equation for the Distortionless Line”, ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations, 62:5 (2019), 413–421 (in Russian) | DOI

[21] Kadyrova V. D., Nasyrov F. S., Suchkova D. A., “A probability representation of solutions of wave equations, and the function of Greene”, Vestnik USATU, 21:4(78) (2017), 129–135 (in Russian)

[22] Tikhonov A. N., Samarsky A. A., Equations of Mathematical Physics, Nauka, M., 2004, 798 pp. (in Russian) | MR

[23] Vladimirov V. S., Equations of Mathematical Physics, Nauka, M., 1981, 512 pp. (in Russian) | MR

[24] Zwibach B., An Introductory Course in String Theory, Editorial URSS, M., 2011, 784 pp. (in Russian)

[25] Il'in V. A., Poznyak È. G., Fundamentals of Mathematical Analysis, v. 2, Fizmatlit, M., 2002, 464 pp. (in Russian) | MR

[26] Butuzov V. F., Number Series. Functional Sequences and Series, Faculty of Physics, Moscow State University, M., 2015, 40 pp. (in Russian)

[27] Nikišhin E. M., “Rearrangements of function series”, Sbornik: Mathematics, 14:2 (1971), 267–280 | DOI | MR

[28] Fikhtengolts G. M., Course of Differential and Integral Calculus, Nauka, M., 1966, 656 pp. (in Russian)

[29] Jolley L. B. W., Summation of Series, Dover Publications, inc., New York , 1961, 278 pp. | MR

[30] Gradshteyn I. S., Ryzhik I. M., Tables of Integrals, Sums, Series and Products, Nauka, M., 1963, 1110 pp. (in Russian) | MR

[31] Grinberg G. A., Selected Questions of the Theory of Electrical and Magnetic Phenomena, AN USSR Publ, M., 1948, 730 pp. (in Russian)

[32] Bogolyubov A. N., Levashova N. T., Mogilevsky I. E., Mukhartova Yu. V., Shapkina N. E., Green's Function of the Laplace Operator, Faculty of Physics, Moscow State University, M., 2018, 188 pp. (in Russian)

[33] Malaschonok G. I., “MathPartner computer algebra”, Programming and Computer Software, 43:2 (2017), 112–118 | DOI | MR

[34] Vasiliev S. A., Edneral V. F., Malykh M. D., Sevastyanov L. A., Mathematical Analysis. Series with MS Mathematics, RUDN University Publ, M., 2016, 119 pp. (in Russian) | MR

[35] Tikhomirov V. M., “Abel and his great theorem”, Kvant, 2003, no. 1, 11–15 (in Russian)

[36] Lobachevsky N. I., Complete Works, v. 5, GITTL, M.–L., 1951, 500 pp. (in Russian) | MR

[37] Pak I. N., “On the sums of trigonometric series”, Russian Mathematical Surveys, 35:2 (1980), 105–168 | DOI | MR

[38] Telyakovskii S. A., “On the properties of blocks of terms of the series $ \sum {\frac{1}{k}\sin k~x}$”, Ukrainian Mathematical Journal, 64:5 (2012), 816–822 | DOI | MR

[39] Knut D., Graham R., Patashnik O., Concrete Mathematics. Mathematical Foundations of Informatics, Mir, M., 1998, 703 pp. (in Russian) | MR

[40] Kolokolov V. V., Lebedev I. V., Selected Chapters of Mathematical Physics, ITF im. Landau Publ, M., 2018, 53 pp. (in Russian)

[41] Zorich V. A., Mathematical Analysis, v. 2, MTsNMO, M., 2019, 676 pp. (in Russian) | MR