Representation of functions on a line by a series of exponential monomials
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 4, pp. 416-429.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we consider the weight spaces of integrable functions $L_p^\omega$ ($p\geq 1$) and continuous functions $C^\omega$ on the real line. Let $\Lambda=\{\lambda_k,n_k\}$ be an unbounded increasing sequence of positive numbers $\lambda_k$ and their multiplicities $n_k$, $\mathcal{E}(\Lambda)=\{t^n e^{\lambda_k t}\}$ be a system of exponential monomials constructed from the sequence $\Lambda$. We study the subspaces $W^p (\Lambda,\omega)$ and $W^0 (\Lambda,\omega)$, which are the closures of the linear span of the system $\mathcal{E}(\Lambda)$ in the spaces $L_p^\omega$ and $C^\omega$, respectively. Under natural constraints on $\Lambda$ (the finiteness of the condensation index $S_\Lambda$ and $n_k/\lambda_k\leq c$, $k\geq 1$) and on the convex weight $\omega$, conditions are obtained under which each function of these subspaces continues to an entire function and is represented by a series in the system $\mathcal{E}(\Lambda)$ that converges absolutely and uniformly on compact sets in the plane. In contrast to the previously known results for the specified representation problem, we do not require that the sequence $\Lambda$ has a density, and we do not impose the separability condition: $\lambda_{k+1}-\lambda_k\geq h$, $k\geq 1$ (instead, the condition of equality to zero of the special condensation index is used).
@article{ISU_2022_22_4_a0,
     author = {A. S. Krivosheev and O. A. Krivosheeva},
     title = {Representation of functions on a line by a series of exponential monomials},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {416--429},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a0/}
}
TY  - JOUR
AU  - A. S. Krivosheev
AU  - O. A. Krivosheeva
TI  - Representation of functions on a line by a series of exponential monomials
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2022
SP  - 416
EP  - 429
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a0/
LA  - ru
ID  - ISU_2022_22_4_a0
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%A O. A. Krivosheeva
%T Representation of functions on a line by a series of exponential monomials
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2022
%P 416-429
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a0/
%G ru
%F ISU_2022_22_4_a0
A. S. Krivosheev; O. A. Krivosheeva. Representation of functions on a line by a series of exponential monomials. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 4, pp. 416-429. http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a0/

[1] Anderson J. M., Binmore K. G., “Closure theorems with applications to entire functions with gaps”, Transactions of the American Mathematical Society, 161 (1971), 381–400 | DOI | MR

[2] Deng G. T., “Incompleteness and closure of a linear span of exponential system in a weighted Banach space”, Journal of Approximation Theory, 125:1 (2003), 1–9 | DOI | MR

[3] Zikkos E., “The closed span of some exponential system in weighted Banach spaces on the real line and a moment problem”, Analysis Mathematica, 44:4 (2018), 605–630 | DOI | MR

[4] Krivosheev A. S., Krivosheeva O. A., Kuzhaev A. F., “The representation by series of exponential monomials of functions from weight subspaces on a line”, Lobachevskii Journal of Mathematics, 42:6 (2021), 1183–1200 | DOI | MR

[5] Boas R. P. Jr., Entire Functions, Academic Press, New York, 1954, 276 pp. | MR

[6] Krivosheev A. S., “A fundamental principle for invariant subspaces in convex domains”, Izvestiya: Mathematics, 68:2 (2004), 291–353 | DOI | DOI | MR

[7] Krivosheev A. S., Krivosheeva O. A., Rafikov A. I., “Invariant subspaces in half-plane”, Ufa Mathematical Journal, 13:3 (2021), 57–79 | DOI | MR

[8] Levin B. Ja., Distribution of Zeros of Entire Functions, American Mathematical Society, Providence, 1964, 583 pp. | MR

[9] Leont'ev A. F., Entire Functions. Series of Exponentials, Nauka, M., 1983, 176 pp. (in Russian) | MR

[10] Rockafellar R. T., Convex Analysis, Princeton University Press, New Jersey, 1970, 470 pp. | MR