Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_3_a5, author = {A. P. Khromov}, title = {Divergent series and generalized mixed problem for a wave equation of the simplest type}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {322--331}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a5/} }
TY - JOUR AU - A. P. Khromov TI - Divergent series and generalized mixed problem for a wave equation of the simplest type JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 322 EP - 331 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a5/ LA - ru ID - ISU_2022_22_3_a5 ER -
%0 Journal Article %A A. P. Khromov %T Divergent series and generalized mixed problem for a wave equation of the simplest type %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 322-331 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a5/ %G ru %F ISU_2022_22_3_a5
A. P. Khromov. Divergent series and generalized mixed problem for a wave equation of the simplest type. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 3, pp. 322-331. http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a5/
[1] Khromov A. P., Kornev V. V., “Divergent series in the Fourier method for the wave equation”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27, no. 4, 2021, 215–238 (in Russian) | DOI | MR
[2] Eiler L., Differential Calculus, GITTL, M.–L., 1949, 580 pp. (in Russian)
[3] Khardi G., Divergent Series, Foreign Languages Publishing House, M., 1951, 504 pp. (in Russian) | MR
[4] Khromov A. P., “Divergent series and generalized mixed problem for wave equation”, Proceedings of the 21st International Saratov Winter School, Contemporary Problems of Function Theory and Their Applications, 21, Saratov State University Publ, Sarartov, 2022, 319–324 (in Russian) (accessed 15 February 2022)
[5] Khromov A. P., “Necessary and sufficient conditions for the existence of a classical solution of the mixed problem for the homogeneous wave equation with an integrable potential”, Differential Equations, 55:5 (2019), 703–717 | DOI | DOI | MR | Zbl
[6] Natanson I. P., The Theory of Functions of a Real Variable, GITTL, M.–L., 1957, 552 pp. (in Russian) | MR
[7] Kornev V. V., Khromov A. P., “Convergence of a formal solution by the Fourier method in a mixed problem for the simplest inhomogeneous wave equation”, Mathematics. Mechanics, 19, Saratov State University Publ, Saratov, 2017, 41–44 (in Russian)