Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_3_a2, author = {V. A. Molchanov and E. V. Khvorostukhina}, title = {Elementary definability of the class of universal hypergraphic automata in the class of semigroups}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {293--306}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a2/} }
TY - JOUR AU - V. A. Molchanov AU - E. V. Khvorostukhina TI - Elementary definability of the class of universal hypergraphic automata in the class of semigroups JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 293 EP - 306 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a2/ LA - ru ID - ISU_2022_22_3_a2 ER -
%0 Journal Article %A V. A. Molchanov %A E. V. Khvorostukhina %T Elementary definability of the class of universal hypergraphic automata in the class of semigroups %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 293-306 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a2/ %G ru %F ISU_2022_22_3_a2
V. A. Molchanov; E. V. Khvorostukhina. Elementary definability of the class of universal hypergraphic automata in the class of semigroups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 3, pp. 293-306. http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a2/
[1] Plotkin B. I., Greenglaz L. Ja., Gvaramija A. A., Algebraic Structures in Automata and Databases Theory, World Scientific, Singapore, River Edge, NJ, 1992, 296 pp. | MR | Zbl
[2] Molchanov V. A., Khvorostukhina E. V., “On problem of abstract definability of universal hypergraphic automata by input symbol semigroup”, Chebyshevskii Sbornik, 20:2 (70) (2019), 251–264 (in Russian) | DOI | MR
[3] Khvorostukhina E. V., Molchanov V. A., “Abstract characterization of input symbol semigroups of universal hypergraphic automata”, Lobachevskii Journal of Mathematics, 41:2 (2020), 214–226 | DOI | MR | Zbl
[4] Khvorostukhina E. V., Molchanov V. A., “Universal hypergraphic automata representation by autonomous input symbols”, Modeling and Analysis of Information Systems, 25:5 (77) (2018), 561–571 | DOI | MR
[5] Pinus A. G., Vazhenin Yu. M., “Elementary classification and decidability of theories of derived structures”, Russian Mathematical Surveys, 60:3 (2005), 395–432 | DOI | DOI | MR | Zbl
[6] Pinus A. G., “On the elementary equivalence of derived structures of free lattices”, Russian Mathematics (Izvestiya VUZ. Matematika), 46:5 (2002), 42–45 | MR | Zbl
[7] Pinus A. G., “Elementary equivalence of derived structures of free semigroups, unars, and groups”, Algebra and Logic, 43:6 (2004), 408–417 | DOI | MR | Zbl
[8] Pinus A. G., “Elementary equivalence for the lattices of subalgebras and automorphism groups of free algebras”, Siberian Mathematical Journal, 49:4 (2008), 692–695 (LLHUMD) | DOI | MR | Zbl
[9] Vazhenin Yu. M., “Elementary properties of semigroups of transformations of ordered sets”, Algebra and Logic, 9:3 (1970), 169–179 | DOI | MR | Zbl
[10] Vazhenin Yu. M., “The elementary definability and elementary characterizability of classes of reflexive graphs”, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1972, no. 7, 3–11 (in Russian) | Zbl
[11] Bunina E. I., Mikhalev A. V., “Elementary equivalence of endomorphism rings of Abelian $p$-groups”, Journal of Mathematical Sciences (New York), 137:6 (2006), 5212–5274 | DOI | MR | Zbl
[12] Ershov Yu. L., Problems of Decidability and Constructive Models, Nauka, M., 1980, 416 pp. (in Russian)
[13] Mal'cev A. I., Algebraic Systems, Springer, Berlin–Heidelberg, 1973, 320 pp. | DOI | MR | MR | Zbl
[14] Lallement G., Semigroups and Combinatorial Applications, Wiley, New York, 1979, 376 pp. | MR | Zbl
[15] Vagner V. V., “The theory of relations and the algebra of partial mappings”, Semigroup theory and its applications, 1, Saratov State University Publ., Saratov, 1965, 3–178 (in Russian)
[16] Bretto A., Hypergraph Theory. An Introduction, Springer, Cham, 2013, 119 pp. | DOI | MR | Zbl
[17] Kárteszi F., Introduction to Finite Geometries, North Holland, Hungary, 2014, 280 pp. | MR | MR