On the continuity of some classes and subclasses of maps with an $s$-averaged characteristic
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 3, pp. 287-292

Voir la notice de l'article provenant de la source Math-Net.Ru

According to the well-known theorem of S. L. Sobolev, if $G$ is a bounded domain of Euclidean space and a function is a function having the first generalized derivatives summable with degree $p$, then it is continuous in $G$. If $1$ this property, generally speaking, may not be. In this paper, we find the necessary conditions under which some classes and subclasses of maps with an $s$-averaged characteristic will be continuous. Examples of subclasses of such mappings with the above properties are given in our papers.
@article{ISU_2022_22_3_a1,
     author = {A. N. Malyutina},
     title = {On the continuity of some classes and subclasses of maps with an $s$-averaged characteristic},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {287--292},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a1/}
}
TY  - JOUR
AU  - A. N. Malyutina
TI  - On the continuity of some classes and subclasses of maps with an $s$-averaged characteristic
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2022
SP  - 287
EP  - 292
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a1/
LA  - ru
ID  - ISU_2022_22_3_a1
ER  - 
%0 Journal Article
%A A. N. Malyutina
%T On the continuity of some classes and subclasses of maps with an $s$-averaged characteristic
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2022
%P 287-292
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a1/
%G ru
%F ISU_2022_22_3_a1
A. N. Malyutina. On the continuity of some classes and subclasses of maps with an $s$-averaged characteristic. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 3, pp. 287-292. http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a1/