Forcing total outer connected monophonic number of a graph
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 3, pp. 278-286.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a connected graph $G = (V,E)$ of order at least two, a subset $T$ of a minimum total outer connected monophonic set $S$ of $G$ is a forcing total outer connected monophonic subset for $S$ if $S$ is the unique minimum total outer connected monophonic set containing $T$. A forcing total outer connected monophonic subset for $S$ of minimum cardinality is a minimum forcing total outer connected monophonic subset of $S$. The forcing total outer connected monophonic number $f_{tom}(S)$ in $G$ is the cardinality of a minimum forcing total outer connected monophonic subset of $S$. The forcing total outer connected monophonic number of $G$ is $f_{tom}(G) = \min\{f_{tom}(S)\}$, where the minimum is taken over all minimum total outer connected monophonic sets $S$ in $G$. We determine bounds for it and find the forcing total outer connected monophonic number of a certain class of graphs. It is shown that for every pair $a,b$ of positive integers with $0 \leq a b$ and $b \geq a+4$, there exists a connected graph $G$ such that $f_{tom}(G) = a$ and $cm_{to}(G) = b$, where $cm_{to}(G)$ is the total outer connected monophonic number of a graph.
@article{ISU_2022_22_3_a0,
     author = {K. Ganesamoorthy and Sh. Lakshmi Priya},
     title = {Forcing total outer connected monophonic number of a graph},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {278--286},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a0/}
}
TY  - JOUR
AU  - K. Ganesamoorthy
AU  - Sh. Lakshmi Priya
TI  - Forcing total outer connected monophonic number of a graph
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2022
SP  - 278
EP  - 286
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a0/
LA  - en
ID  - ISU_2022_22_3_a0
ER  - 
%0 Journal Article
%A K. Ganesamoorthy
%A Sh. Lakshmi Priya
%T Forcing total outer connected monophonic number of a graph
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2022
%P 278-286
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a0/
%G en
%F ISU_2022_22_3_a0
K. Ganesamoorthy; Sh. Lakshmi Priya. Forcing total outer connected monophonic number of a graph. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 3, pp. 278-286. http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a0/

[1] Buckley F., Harary F., Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990, 335 pp. | MR | Zbl

[2] Harary F., Graph Theory, Addision-Wesley, 1969, 274 pp. | MR | Zbl

[3] Costa E. R., Dourado M. C., Sampaio R. M., “Inapproximability results related to monophonic convexity”, Discrete Applied Mathematics, 197 (2015), 70–74 | DOI | MR | Zbl

[4] Dourado M. C., Protti F., Szwarcfiter J. L., “Algorithmic aspects of monophonic convexity”, Electronic Notes in Discrete Mathematics, 30 (2008), 177–182 | DOI | MR | Zbl

[5] Dourado M. C., Protti F., Szwarcfiter J. L., “Complexity results related to monophonic convexity”, Discrete Applied Mathematics, 158 (2010), 1268–1274 | DOI | MR | Zbl

[6] Paluga E. M., Canoy S. R., “Monophonic numbers of the join and composition of connected graphs”, Discrete Mathematics, 307:9–10 (2007), 1146–1154 | DOI | MR | Zbl

[7] Santhakumaran A. P., Titus P., Ganesamoorthy K., “On the monophonic number of a graph”, Journal of Applied Mathematics Informatics, 32:1–2 (2014), 255–266 | DOI | MR | Zbl

[8] Ganesamoorthy K., Murugan M., Santhakumaran A. P., “Extreme-support total monophonic graphs”, Bulletin of the Iranian Mathematical Society, 47 (2021), 159–170 | DOI | MR | Zbl

[9] Ganesamoorthy K., Murugan M., Santhakumaran A. P., “On the connected monophonic number of a graph”, International Journal of Computer Mathematics: Computer Systems Theory, 7:2 (2022), 139–148 | DOI | MR

[10] Santhakumaran A. P., Titus P., Ganesamoorthy K., Murugan M., “The forcing total monophonic number of a graph”, Proyecciones, 40:2 (2021), 561–571 | DOI | MR | Zbl

[11] Ganesamoorthy K., Lakshmi Priya S., “The outer connected monophonic number of a graph”, Ars Combinatoria, 153 (2020), 149–160 | MR | Zbl

[12] Ganesamoorthy K., Lakshmi Priya S., “Further results on the outer connected monophonic number of a graph”, Transactions of National Academy of Sciences of Azerbaijan, 41:4 (2021), 51–59 | MR

[13] Ganesamoorthy K., Lakshmi Priya S., “Extreme outer connected monophonic graphs”, Communications in Combinatorics and Optimization, 7:2 (2022), 211–226 | DOI | MR