Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_3_a0, author = {K. Ganesamoorthy and Sh. Lakshmi Priya}, title = {Forcing total outer connected monophonic number of a graph}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {278--286}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a0/} }
TY - JOUR AU - K. Ganesamoorthy AU - Sh. Lakshmi Priya TI - Forcing total outer connected monophonic number of a graph JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 278 EP - 286 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a0/ LA - en ID - ISU_2022_22_3_a0 ER -
%0 Journal Article %A K. Ganesamoorthy %A Sh. Lakshmi Priya %T Forcing total outer connected monophonic number of a graph %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 278-286 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a0/ %G en %F ISU_2022_22_3_a0
K. Ganesamoorthy; Sh. Lakshmi Priya. Forcing total outer connected monophonic number of a graph. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 3, pp. 278-286. http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a0/
[1] Buckley F., Harary F., Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990, 335 pp. | MR | Zbl
[2] Harary F., Graph Theory, Addision-Wesley, 1969, 274 pp. | MR | Zbl
[3] Costa E. R., Dourado M. C., Sampaio R. M., “Inapproximability results related to monophonic convexity”, Discrete Applied Mathematics, 197 (2015), 70–74 | DOI | MR | Zbl
[4] Dourado M. C., Protti F., Szwarcfiter J. L., “Algorithmic aspects of monophonic convexity”, Electronic Notes in Discrete Mathematics, 30 (2008), 177–182 | DOI | MR | Zbl
[5] Dourado M. C., Protti F., Szwarcfiter J. L., “Complexity results related to monophonic convexity”, Discrete Applied Mathematics, 158 (2010), 1268–1274 | DOI | MR | Zbl
[6] Paluga E. M., Canoy S. R., “Monophonic numbers of the join and composition of connected graphs”, Discrete Mathematics, 307:9–10 (2007), 1146–1154 | DOI | MR | Zbl
[7] Santhakumaran A. P., Titus P., Ganesamoorthy K., “On the monophonic number of a graph”, Journal of Applied Mathematics Informatics, 32:1–2 (2014), 255–266 | DOI | MR | Zbl
[8] Ganesamoorthy K., Murugan M., Santhakumaran A. P., “Extreme-support total monophonic graphs”, Bulletin of the Iranian Mathematical Society, 47 (2021), 159–170 | DOI | MR | Zbl
[9] Ganesamoorthy K., Murugan M., Santhakumaran A. P., “On the connected monophonic number of a graph”, International Journal of Computer Mathematics: Computer Systems Theory, 7:2 (2022), 139–148 | DOI | MR
[10] Santhakumaran A. P., Titus P., Ganesamoorthy K., Murugan M., “The forcing total monophonic number of a graph”, Proyecciones, 40:2 (2021), 561–571 | DOI | MR | Zbl
[11] Ganesamoorthy K., Lakshmi Priya S., “The outer connected monophonic number of a graph”, Ars Combinatoria, 153 (2020), 149–160 | MR | Zbl
[12] Ganesamoorthy K., Lakshmi Priya S., “Further results on the outer connected monophonic number of a graph”, Transactions of National Academy of Sciences of Azerbaijan, 41:4 (2021), 51–59 | MR
[13] Ganesamoorthy K., Lakshmi Priya S., “Extreme outer connected monophonic graphs”, Communications in Combinatorics and Optimization, 7:2 (2022), 211–226 | DOI | MR