Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_2_a6, author = {Yu. N. Radayev and E. V. Murashkin}, title = {Generalized pseudotensor formulations {of~the~Stokes'} integral theorem}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {205--215}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a6/} }
TY - JOUR AU - Yu. N. Radayev AU - E. V. Murashkin TI - Generalized pseudotensor formulations of~the~Stokes' integral theorem JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 205 EP - 215 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a6/ LA - en ID - ISU_2022_22_2_a6 ER -
%0 Journal Article %A Yu. N. Radayev %A E. V. Murashkin %T Generalized pseudotensor formulations of~the~Stokes' integral theorem %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 205-215 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a6/ %G en %F ISU_2022_22_2_a6
Yu. N. Radayev; E. V. Murashkin. Generalized pseudotensor formulations of~the~Stokes' integral theorem. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 2, pp. 205-215. http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a6/
[1] Truesdell C., Toupin R., “The Classical Field Theories”, Principles of Classical Mechanics and Field Theory, Handbuch der Physik, 1, ed. S. Flügge, Springer, Berlin–Heidelberg, 1960, 226–858 | DOI
[2] Schouten J. A., Tensor Analysis for Physicists, Clarendon Press, Oxford, 1965, 434 pp.
[3] Synge J. L., Schild A., Tensor Calculus, Dover Publications Inc., New York, 1978, 324 pp.
[4] Nowacki W., Theory of Micropolar Elasticity, Springer, Vienna, 1970, 286 pp. | DOI
[5] Murashkin E. V., Radayev Yu. N., “On a micropolar theory of growing solids”, Journal Samara State Technical University, Ser. Physical and Mathematical Sciences, 24:3 (2020), 424–444 | DOI
[6] Murashkin E. V., Radaev Yu. N., “On a differential constraint in asymmetric theories of the mechanics of growing solids”, Mechanics of Solids, 54 (2019), 1157–1164 | DOI
[7] Murashkin E. V., Radaev Yu. N., “On theory of oriented tensor elements of area for a micropolar continuum immersed in an external plane space”, Mechanics of Solids, 57:2 (2022) | DOI
[8] Radayev Yu. N., Murashkin E. V., “Pseudotensor formulation of the mechanics of hemitropic micropolar media”, Problems of Strength and Plasticity, 82:4 (2020), 399–412 (in Russian) | DOI
[9] Murashkin E. V., Radayev Yu. N., “Generalization of the algebraic Hamilton – Cayley theory”, Mechanics of Solids, 56 (2021), 996–1003 | DOI
[10] Murashkin E. V., Radayev Yu. N., “On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames”, Journal Samara State Technical University, Ser. Physical and Mathematical Sciences, 25:3 (2021), 457–474 (in Russian) | DOI
[11] Kopff A., The Mathematical Theory of Relativity, Dutton Press, Dutton, 1921, 524 pp.
[12] Radaev Yu. N., A Spatial Problem of the Mathematical Theory of Plasticity, Samara University Publ, Samara, 2006, 340 pp. (in Russian)