Generalized model of nonlinear elastic foundation and longitudinal waves in cylindrical shells
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 2, pp. 196-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-integrable quasi-hyperbolic sixth-order equation is derived that simulates the axisymmetric propagation of longitudinal waves along the generatrix of a cylindrical Kirchhoff – Love shell interacting with a nonlinear elastic medium. A six-parameter generalized model of a nonlinear elastic medium, which is reduced in particular cases to the models of Winkler, Pasternak, and Hetenyi, is introduced into consideration. The equation was derived by the asymptotic multiscale expansions method under the assumption that the dimensionless parameters of nonlinearity, dispersion, and thinness have the same order of smallness. The use of the introduced model made it possible to reveal additional high-frequency and low-frequency dispersions characterizing the response of the external environment to bending and shear. It is shown that non-classical shell theories should be used to reveal nonlinear effects that compensate for dispersion. It was found that the Pasternak model admits a “dispersionless” state when the dispersion due to the inertia of normal displacement is compensated by the dispersion generated by the reaction of the nonlinear elastic foundation to shear.
@article{ISU_2022_22_2_a5,
     author = {A. I. Zemlyanukhin and A. V. Bochkarev and A. V. Ratushny and A. V. Chernenko},
     title = {Generalized model of nonlinear elastic foundation and longitudinal waves in cylindrical shells},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {196--204},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a5/}
}
TY  - JOUR
AU  - A. I. Zemlyanukhin
AU  - A. V. Bochkarev
AU  - A. V. Ratushny
AU  - A. V. Chernenko
TI  - Generalized model of nonlinear elastic foundation and longitudinal waves in cylindrical shells
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2022
SP  - 196
EP  - 204
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a5/
LA  - en
ID  - ISU_2022_22_2_a5
ER  - 
%0 Journal Article
%A A. I. Zemlyanukhin
%A A. V. Bochkarev
%A A. V. Ratushny
%A A. V. Chernenko
%T Generalized model of nonlinear elastic foundation and longitudinal waves in cylindrical shells
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2022
%P 196-204
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a5/
%G en
%F ISU_2022_22_2_a5
A. I. Zemlyanukhin; A. V. Bochkarev; A. V. Ratushny; A. V. Chernenko. Generalized model of nonlinear elastic foundation and longitudinal waves in cylindrical shells. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 2, pp. 196-204. http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a5/

[1] Winkler E., Die Lehre von der Elastizität und Festigkeit, Verlag von H. Dominicus, Prague, 1867, 388 pp. (in German)

[2] Biot M. A., “Bending of an infinite beam on an elastic foundation”, Journal of Applied Mechanics, 4:1 (1937), A1–A7 | DOI

[3] Filonenko-Borodich M., “Some approximate theories of elastic foundation”, Uchenyie Zapiski Moskovkogo Gosudarstuennogo Universiteta. Mekhanika, 46 (1940), 3–18 (in Russian)

[4] Pasternak P. L., On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants, Gosstrojizdat, M., 1954, 56 pp. (in Russian)

[5] Hetenyi M., Beams on Elastic Foundation: Theory with Applications in the Fields of Civil and Mechanical Engineering, University of Michigan Press, Ann Arbor, 1958, 255 pp.

[6] Vlasov V. Z., Leont'ev N. N., Beams, Plates and Shells on Elastic Foundations, Israel Program for Scientific Translations, Jerusalem, Israel, 1966, 357 pp.

[7] Thompson J. M. T., “Advances in shell buckling: Theory and experiments”, International Journal of Bifurcation and Chaos, 25:1 (2015), 1530001 | DOI

[8] Hunt G., “Buckling in space and time”, Nonlinear Dynamics, 43 (2006), 29–46 | DOI

[9] Champneys A. R., Hunt G. W., Thompson J. M. T., “Localization and solitary waves in solid mechanics”, Philosophical Transactions of the Royal Society A, 355 (1997), 2077–2081 | DOI

[10] Kerr A. D., “On the formal development of elastic foundation models”, Ingenieur-Archiv, 54:6 (1984), 455–464 | DOI

[11] Younesian D., Hosseinkhani A., Askari H., Esmailzadeh E., “Elastic and viscoelastic foundations: A review on linear and nonlinear vibration modeling and applications”, Nonlinear Dynamics, 97 (2019), 853–895 | DOI

[12] Dillard D., Mukherjee B., Karnal P., Batra R. C., Frechette J., “A review of Winkler's foundation and its profound influence on adhesion and soft matter applications”, Soft Matter, 14 (2018), 3669–3683 | DOI

[13] Kaplunov J., Prikazchikov D. A., Rogerson G. A., “Edge bending wave on a thin elastic plate resting on a Winkler foundation”, Proceedings of the Royal Society A, 472 (2016), 20160178 | DOI

[14] Kaplunov J., Nobili A., “The edge waves on a Kirchhoff plate bilaterally supported by a two-parameter elastic foundation”, Journal of Vibration and Control, 23:12 (2017), 2014–2022 | DOI

[15] Indeitsev D. A., Kuklin T. S., Mochalova Yu. A., “Localization in a Bernoulli - Euler beam on an inhomogeneous elastic foundation”, Vestnik St. Petersburg University: Mathematics, 48:1 (2015), 41–48 | DOI

[16] Indeitsev D. A., Osipova E. V., “Localization of nonlinear waves in elastic bodies with inclusions”, Acoustical Physics, 50 (2004), 420–426 | DOI

[17] Erofeev V. I., Leontieva A. V., “Dispersion and spatial localization of bending waves propagating in a Timoshenko beam laying on a nonlinear elastic base”, Mechanics of Solids, 56:4 (2021), 443–454 | DOI

[18] Erofeev V. I., Leonteva A. V., “Localized bending and longitudinal waves in rods interacting with external nonlinear elastic medium”, Journal of Physics: Conference Series, 1348 (2019), 012004 | DOI

[19] Zemlyanukhin A. I., Bochkarev A. V., “Axisymmetric nonlinear modulated waves in a cylindrical shell”, Acoustical Physics, 64 (2018), 408–414 | DOI

[20] Zemlyanukhin A. I., Bochkarev A. V., Andrianov I. V., Erofeev V. I., “The Schamel – Ostrovsky equation in nonlinear wave dynamics of cylindrical shells”, Journal of Sound and Vibration, 491 (2021) | DOI

[21] Stepanyants Y. A., “On stationary solutions of the reduced Ostrovsky equation: Periodic waves, compactons and compound solitons”, Chaos, Soliton and Fractals, 28:1 (2006), 193–204 | DOI

[22] Volmir A., The Nonlinear Dynamics of Plates and Shells, Foreign Tech. Div., Wright-Patterson AFB, 1974, 450 pp.

[23] Bochkarev A. V., Zemlyanukhin A. I., Mogilevich L. I., “Solitary waves in an inhomogeneous cylindrical shell interacting with an elastic medium”, Acoustical Physics, 63 (2017), 148–153 | DOI

[24] Ostrovsky L. A., “Nonlinear internal waves in a rotating ocean”, Okeanologia, 18:2 (1978), 181–191

[25] Conte R., Musette M., The Painlevé Handbook, Springer, Berlin, 2008 | DOI

[26] Pelinovsky E. N., Didenkulova (Shurgalina) E. G., Talipova T. G., Tobish E., Orlov Yu. F., Zen'kovich A. V., “Korteweg – de Vries type equations in applications”, Transactions of NNSTU n.a. R. E. Alekseev, 2018, no. 4, 41–47 (in Russian) | DOI

[27] Obregon M. A., Stepanyants Yu. A., “On numerical solution of the Gardner – Ostrovsky equation”, Mathematical Modelling of Natural Phenomena, 7:2 (2012), 113–130 | DOI

[28] Stepanyants Yu. A., “Nonlinear waves in a rotating ocean (The Ostrovsky equation and its generalizations and applications)”, Izvestiya, Atmospheric and Oceanic Physics, 56 (2020), 16–32 | DOI

[29] Grimshaw R. H. J., Helfrich K., Johnson E. R., “The reduced Ostrovsky equation: Integrability and breaking”, Studies in Applied Mathematics, 129:4 (2012), 414–436 | DOI

[30] Galkin V. N., Stepanyants Yu. A., “On the existence of stationary solitary waves in a rotating fluid”, Journal of Applied Mathematics and Mechanics, 55:6 (1991), 939–943 | DOI