Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_2_a3, author = {Kh. A. Khachatryan and H. S. Petrosyan}, title = {On the solvability of a class of nonlinear {Hammerstein} integral equations on the semiaxis}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {169--179}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a3/} }
TY - JOUR AU - Kh. A. Khachatryan AU - H. S. Petrosyan TI - On the solvability of a class of nonlinear Hammerstein integral equations on the semiaxis JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 169 EP - 179 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a3/ LA - ru ID - ISU_2022_22_2_a3 ER -
%0 Journal Article %A Kh. A. Khachatryan %A H. S. Petrosyan %T On the solvability of a class of nonlinear Hammerstein integral equations on the semiaxis %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 169-179 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a3/ %G ru %F ISU_2022_22_2_a3
Kh. A. Khachatryan; H. S. Petrosyan. On the solvability of a class of nonlinear Hammerstein integral equations on the semiaxis. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 2, pp. 169-179. http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a3/
[1] Engibaryan N. B., “On a problem in nonlinear radiative transfer”, Astrophysics, 2 (1966), 12–14 | DOI
[2] Feller W., An Introduction to Probability Theory and Its Applications, v. 2, 2nd ed., Wiley, 1991, 704 pp.
[3] Cercignani C., Theory and Application of the Boltzmann Equation, Scottish Academic Press, Edinburgh–London, 1975, 415 pp.
[4] Khachatryan A. Kh., Khachatryan Kh. A., “Qualitative difference between solutions for a model of the Boltzmann equation in the linear and nonlinear cases”, Theoretical and Mathematical Physics, 172:3 (2012), 1315–1320 | DOI | DOI
[5] Kogan M. N., Rarefied Gas Dynamics, Springer, 1969, 400 pp.
[6] Diekmann O., “Thresholds and travelling waves for the geographical spread of infection”, Journal of Mathematical Biology, 6:2 (1978), 109–130 | DOI
[7] Diekmann O., “Run for your life. A note on the asymptotic speed of propogation of an epidemic”, Journal of Differential Equations, 33:1 (1979), 58–73 | DOI
[8] Sergeev A. G., Khachatryan Kh. A., “On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic”, Transactions of the Moscow Mathematical Society, 80 (2019), 95–111 | DOI
[9] Khachatryan Kh. A., “Sufficient conditions for the solvability of the Urysohn integral equation on a half-line”, Doklady Mathematics, 79 (2009), 246–249 | DOI
[10] Khachatryan Kh. A., “On a class of integral equations of Urysohn type with strong non-linearity”, Izvestiya: Mathematics, 76:1 (2012), 163–189 | DOI | DOI
[11] Khachatryan Kh. A., “On a class of nonlinear integral equations with a noncompact operator”, Journal of Contemporary Mathematical Analysis, 46:2 (2011), 89–100 | DOI
[12] Khachatryan Kh. A., “Positive solubility of some classes of non-linear integral equations of Hammerstein type on the semi-axis and on the whole line”, Izvestiya: Mathematics, 79:2 (2015), 411–430 | DOI | DOI
[13] Arabadzhyan L. G., “Solution of certain integral equations of the Hammerstein type”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 32:1 (1997), 17–24
[14] Vladimirov V. S., Volovich Y. I., “Nonlinear dynamics equation in $p$-adic string theory”, Theoretical and Mathematical Physics, 138:3 (2004), 297–309 | DOI | DOI
[15] Zhukovskaya L. V., “Iterative method for solving nonlinear integral equations describing rolling solutions in string theory”, Theoretical and Mathematical Physics, 146:3 (2006), 335–342 | DOI | DOI
[16] Khachatryan Kh. A., “On the solubility of certain classes of non-linear integral equations in $p$-adic string theory”, Izvestiya: Mathematics, 82:2 (2018), 407–427 | DOI | DOI
[17] Rudin W., Functional Analysis, 2nd ed., McGraw-Hill, Inc, New York, 1991, 441 pp.
[18] Kolmogorov A. N., Fomin S. V., Elements of the Theory of Function and Functional Analysis, Nauka, M., 1981, 544 pp. (in Russian)