Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_2_a2, author = {V. Sh. Roitenberg}, title = {On generation of a limit cycle from a separatrix loop of a sewn saddle-node}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {159--168}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a2/} }
TY - JOUR AU - V. Sh. Roitenberg TI - On generation of a limit cycle from a separatrix loop of a sewn saddle-node JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 159 EP - 168 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a2/ LA - ru ID - ISU_2022_22_2_a2 ER -
%0 Journal Article %A V. Sh. Roitenberg %T On generation of a limit cycle from a separatrix loop of a sewn saddle-node %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 159-168 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a2/ %G ru %F ISU_2022_22_2_a2
V. Sh. Roitenberg. On generation of a limit cycle from a separatrix loop of a sewn saddle-node. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 2, pp. 159-168. http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a2/
[1] Andronov A. A., Leontovich E. A., “Some cases of dependence of limit cycles on a parameter”, The Bulletin of Gorky State University, 1939, no. 6, 3–24 (in Russian)
[2] Shilnikov L. P., “Some cases of generation of period motions from singular trajectories”, Matematicheskii Sbornik. Novaya Seriya, 61(103):4 (1963), 443–466 (in Russian)
[3] Roitenberg V. Sh., “On generation of stable closed trajectories of discontinuous vector fields”, Mathematics and mathematical education. Theory and practice, 3, YaGTU Publ., Yaroslavl, 2002, 19–23 (in Russian)
[4] Filippov A. F., Differential Equations with Discontinuous Right-hand Part, Nauka, M., 1985, 224 pp. (in Russian)
[5] di Bernardo M., Budd Ch. J., Capneys A. R., Kowalczyk P., Piecewise-smooth Dynamical Systems, Applied Mathematical Sciences, 163, Springer, London, 2008, 483 pp. | DOI
[6] Guardia M., Seara T. M., Teixeira M. A., “Generic bifurcations of low codimension of planar Filippov systems”, Journal of Differential Equations, 250:4 (2011), 1967–2023 | DOI
[7] Roitenberg V. Sh., “On bifurcations in the neighborhood of a singular point of triple sewn focus type”, University Proceedings. Volga Region. Physical and Mathematical Sciences. Mathematics, 2017, no. 2 (42), 18–31 (in Russian) | DOI
[8] Simpson D. J. W., Bifurcations in Piecewise-Smooth Continuous Systems, World Scientific Series on Nonlinear Science, Series A, 70, World Scientific Publishing Co. Pte. Ltd, 2010, 256 pp. | DOI
[9] Palis J., de Melo W., Geometric Theory of Dynamical Systems: An Introduction, Springer, New York, NY, 1982, 198 pp. | DOI
[10] Fichtenholz G. M., Course of Differential and Integral Calculus, v. 1, Fizmatgiz, M., 1962, 607 pp. (in Russian)
[11] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L. O., Methods of Qualitative Theory in Nonlinear Dynamics, v. II, World Scientific Series on Nonlinear Science, Series A, 5, World Scientific, River Edge, N.J., 2001, 548 pp. | DOI