On generation of a limit cycle from a separatrix loop of a sewn saddle-node
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 2, pp. 159-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers dynamical systems on the plane, defined by continuous piecewise smooth vector fields. Such systems are used as mathematical models of real processes with switching. An important task is to find the conditions for the generation of periodic trajectories when the parameters change. The paper describes the bifurcation of the birth of a periodic trajectory from the loop of the separatrix of a sewn saddle-node  — an analogue of the classical bifurcation of the separatrix loop of a saddle-node of a smooth dynamical system. Consider a one-parameter family $\{ X_\varepsilon \} $ of continuous piecewise-smooth vector fields on the plane. Let $z^0 $ be a point on the switching line. Let's choose the local coordinates $x,y$ in which $z^0 $ has zero coordinates, and the switching line is given by the equation $y = 0$. Let the vector field $X_0 $ in a semi-neighborhood $y \ge 0$ ($y \le 0$) coincide with a smooth vector field $X_0^ + $ ($X_0^ - $), for which the point $z^0 $ is a stable rough node (rough saddle), and the proper subspaces of the matrix of the linear part of the field in $z^0 $ do not coincide with the straight line $y = 0$. The singular point $z^0 $ is called a sewn saddle-node. There is a single trajectory $L_0 $ that is $\alpha $-limit to $z^0 $  — the outgoing separatrix of the point $z^0 $. It is assumed that $L_0 $ is also $\omega $-limit to $z^0$, and enters $z^0 $ in the leading direction of the node of the field $X_0^ + $. For generic family, when the parameter $\varepsilon $ changes, the sewn saddle-node either splits into a rough node and a rough saddle, or disappears. In the paper it is proved that in the latter case the only periodic trajectory of the field $X_\varepsilon $ is generated from the contour $L_0 \cup \{ z^0 \} $  — a stable limit cycle.
@article{ISU_2022_22_2_a2,
     author = {V. Sh. Roitenberg},
     title = {On generation of a limit cycle from a separatrix loop of a sewn saddle-node},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {159--168},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a2/}
}
TY  - JOUR
AU  - V. Sh. Roitenberg
TI  - On generation of a limit cycle from a separatrix loop of a sewn saddle-node
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2022
SP  - 159
EP  - 168
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a2/
LA  - ru
ID  - ISU_2022_22_2_a2
ER  - 
%0 Journal Article
%A V. Sh. Roitenberg
%T On generation of a limit cycle from a separatrix loop of a sewn saddle-node
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2022
%P 159-168
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a2/
%G ru
%F ISU_2022_22_2_a2
V. Sh. Roitenberg. On generation of a limit cycle from a separatrix loop of a sewn saddle-node. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 2, pp. 159-168. http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a2/

[1] Andronov A. A., Leontovich E. A., “Some cases of dependence of limit cycles on a parameter”, The Bulletin of Gorky State University, 1939, no. 6, 3–24 (in Russian)

[2] Shilnikov L. P., “Some cases of generation of period motions from singular trajectories”, Matematicheskii Sbornik. Novaya Seriya, 61(103):4 (1963), 443–466 (in Russian)

[3] Roitenberg V. Sh., “On generation of stable closed trajectories of discontinuous vector fields”, Mathematics and mathematical education. Theory and practice, 3, YaGTU Publ., Yaroslavl, 2002, 19–23 (in Russian)

[4] Filippov A. F., Differential Equations with Discontinuous Right-hand Part, Nauka, M., 1985, 224 pp. (in Russian)

[5] di Bernardo M., Budd Ch. J., Capneys A. R., Kowalczyk P., Piecewise-smooth Dynamical Systems, Applied Mathematical Sciences, 163, Springer, London, 2008, 483 pp. | DOI

[6] Guardia M., Seara T. M., Teixeira M. A., “Generic bifurcations of low codimension of planar Filippov systems”, Journal of Differential Equations, 250:4 (2011), 1967–2023 | DOI

[7] Roitenberg V. Sh., “On bifurcations in the neighborhood of a singular point of triple sewn focus type”, University Proceedings. Volga Region. Physical and Mathematical Sciences. Mathematics, 2017, no. 2 (42), 18–31 (in Russian) | DOI

[8] Simpson D. J. W., Bifurcations in Piecewise-Smooth Continuous Systems, World Scientific Series on Nonlinear Science, Series A, 70, World Scientific Publishing Co. Pte. Ltd, 2010, 256 pp. | DOI

[9] Palis J., de Melo W., Geometric Theory of Dynamical Systems: An Introduction, Springer, New York, NY, 1982, 198 pp. | DOI

[10] Fichtenholz G. M., Course of Differential and Integral Calculus, v. 1, Fizmatgiz, M., 1962, 607 pp. (in Russian)

[11] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L. O., Methods of Qualitative Theory in Nonlinear Dynamics, v. II, World Scientific Series on Nonlinear Science, Series A, 5, World Scientific, River Edge, N.J., 2001, 548 pp. | DOI