Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_1_a9, author = {G. Yu. Chernyshova and N. D. Rasskazkin}, title = {Software implementation of~ensemble models for the analysis of~regional socio-economic development indicators}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {130--137}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a9/} }
TY - JOUR AU - G. Yu. Chernyshova AU - N. D. Rasskazkin TI - Software implementation of~ensemble models for the analysis of~regional socio-economic development indicators JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 130 EP - 137 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a9/ LA - en ID - ISU_2022_22_1_a9 ER -
%0 Journal Article %A G. Yu. Chernyshova %A N. D. Rasskazkin %T Software implementation of~ensemble models for the analysis of~regional socio-economic development indicators %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 130-137 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a9/ %G en %F ISU_2022_22_1_a9
G. Yu. Chernyshova; N. D. Rasskazkin. Software implementation of~ensemble models for the analysis of~regional socio-economic development indicators. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 1, pp. 130-137. http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a9/
[1] Aivazian S. A., Methods of Econometrics, INFRA-M, M., 2019, 512 pp. (in Russian)
[2] Greene W. H., Econometric Analysis, 5$^{\rm th}$ ed., Prentice Hall, Upper Saddle River, NJ, 2003, 1026 pp.
[3] Hajjem A., Bellavance F., Larocque D., “Mixed-effects random forest for clustered data”, Journal of Statistical Computation and Simulation, 84:6 (2014), 1313–1328 | DOI | MR | Zbl
[4] Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Liu T. Y., “LightGBM: A highly efficient gradient boosting decision tree”, Advances in neural information processing system, 30 (2017), 3146–3154
[5] Firsova A., Chernyshova G., “Efficiency analysis of regional innovation development based on DEA Malmquist index”, Information, 11:6 (2020), 294 | DOI
[6] Veshneva I., Chernyshova G., “The scenario modeling of regional competitiveness risks based on the Chapman-Kolmogorov equations”, Journal of Physics: Conference Series (JPCS), 1784:1 (2021), 012008 | DOI
[7] Gurka M. J., Kelley G. A., Edwards L. J., “Fixed and random effects models”, Wiley Interdisciplinary Reviews: Computational Statistics, 4:2 (2011), 181–190 | DOI
[8] Breiman L., Friedman J. H., Stone C. J., Olshen R. A., Classication and Regression Trees, 1$^{\rm st}$ ed., CRC Press, New York, 1984, 368 pp. | DOI | MR
[9] Laird N. M., Ware J. H., “Random-effects models for longitudinal data”, Biometrics, 38 (1982), 963–974 | DOI | Zbl
[10] Pinheiro J., Bates D., Mixed-Effects Models in S and S-PLUS, Springer Science Business Media, 2006, 528 pp.
[11] Rasmussen C. E., Williams C. K. J., Gaussian Processes for Machine Learning, The MIT Press, 2006, 266 pp. | MR
[12] Sigrist F., Gaussian Process Boosting, 2020, arXiv: 2004.02653 | Zbl
[13] Baltagi B. H., Econometric Analysis of Panel Data, 6$^{\rm th}$ ed., John Wiley Sons, Chichester, 2021, 436 pp.
[14] Information Analysis System FIRA PRO, (accessed 15 September 2021) https://pro.fira.ru