Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_1_a8, author = {O. A. Khokhlova and A. N. Khokhlova}, title = {Analysis of technological trends to identify skills that will be in demand in the labor market with open-source data using machine learning methods}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {123--129}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a8/} }
TY - JOUR AU - O. A. Khokhlova AU - A. N. Khokhlova TI - Analysis of technological trends to identify skills that will be in demand in the labor market with open-source data using machine learning methods JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 123 EP - 129 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a8/ LA - en ID - ISU_2022_22_1_a8 ER -
%0 Journal Article %A O. A. Khokhlova %A A. N. Khokhlova %T Analysis of technological trends to identify skills that will be in demand in the labor market with open-source data using machine learning methods %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 123-129 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a8/ %G en %F ISU_2022_22_1_a8
O. A. Khokhlova; A. N. Khokhlova. Analysis of technological trends to identify skills that will be in demand in the labor market with open-source data using machine learning methods. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 1, pp. 123-129. http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a8/
[1] Brownlee J., Comparing Classical and Machine Learning Algorithms for Time Series Forecasting, (accessed 28 August 2021) https://machinelearningmastery.com/findings-comparing-classical-and-machine-learning-methods-for-time-series-forecasting/
[2] Kuhn M., Johnson K., Applied Predictive Modeling, Springer Science+Business Media, New York, 2013, 600 pp. | DOI | MR | Zbl