Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_1_a3, author = {A. Sh. Dzhabrailov and A. P. Nikolaev and Yu. V. Klochkov and N. A. Gureeva and T. R. Ishchanov}, title = {Nonlinear deformation of axisymmetrically loaded rotation shell based on {FEM} with different variants of definitional equations}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {48--61}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a3/} }
TY - JOUR AU - A. Sh. Dzhabrailov AU - A. P. Nikolaev AU - Yu. V. Klochkov AU - N. A. Gureeva AU - T. R. Ishchanov TI - Nonlinear deformation of axisymmetrically loaded rotation shell based on FEM with different variants of definitional equations JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 48 EP - 61 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a3/ LA - ru ID - ISU_2022_22_1_a3 ER -
%0 Journal Article %A A. Sh. Dzhabrailov %A A. P. Nikolaev %A Yu. V. Klochkov %A N. A. Gureeva %A T. R. Ishchanov %T Nonlinear deformation of axisymmetrically loaded rotation shell based on FEM with different variants of definitional equations %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 48-61 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a3/ %G ru %F ISU_2022_22_1_a3
A. Sh. Dzhabrailov; A. P. Nikolaev; Yu. V. Klochkov; N. A. Gureeva; T. R. Ishchanov. Nonlinear deformation of axisymmetrically loaded rotation shell based on FEM with different variants of definitional equations. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 1, pp. 48-61. http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a3/
[1] Amosov A. A., Technical Theory of Thin Elastic Shells, ASV, M., 2011, 304 pp. (in Russian)
[2] Petrov V. V., Nonlinear Incremental Building Mechanics, Infa-Inzhenerija, M., 2014, 480 pp. (in Russian)
[3] Cohen H., De Silva C. N., “Nonlinear theory of elastic surfaces”, Journal of Mathematical Physics, 7:2 (1966), 246–253 | DOI | MR | Zbl
[4] Kirillova I. V., Kossovich L. Y., “Elliptic boundary layer in shells of revolution under normal edge shock loading”, Multiscale Solid Mechanics, Advanced Structured Materials, 141, eds. H. Altenbach, V. A. Eremeyev, L. A. Igumnov, Springer, Cham, 2021, 249–260 | DOI
[5] Kabrits S. A., Mikhailovsky E. I., Tovstik P. E., Chernykh K. F., Shamina V. A., General Nonlinear Theory of Elastic Shells, Izd-vo S.-Peterburgskogo universiteta, St. Petersburg, 2002, 388 pp.
[6] Kayumov R. A., “Postbuckling behavior of compressed rods in an elastic medium”, Mechanics of Solids, 52:5 (2017), 575–580 | DOI
[7] Badriev I. B., Paimushin V. N., “Refined models of contact interaction of a thin plate with postioned on both sides deformable foundations”, Lobachevskii Jurnal of Mathematics, 38:5 (2017), 779–793 | DOI | MR | Zbl
[8] Beirao da Veiga L., Lovadina C., Mora D., “A virtual element method for elastic and inelastic problems on polytope meshes”, Computer Methods in Applied Mechanics and Engineering, 295 (2015), 327–346 | DOI | MR | Zbl
[9] Aldakheel F., Hudobivnik B., Wriggers P., “Virtual element formulation for phase-field modeling of ductile fracture”, International Journal for Multiscale Computational Engineering, 17:2 (2019), 181–200 | DOI | MR
[10] Magisano D., Leonetti L., Garcea G., “Koiter asymptotic analysis of multilayered composite structures using mixed solid-shell finite elements”, Composite Structures, 154 (2016), 296–308 | DOI
[11] Lomakin E. V., Minaev N. G., “Axisymmetric stress field near a circular cut in a solid with stress state dependent plastic properties”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 19:3 (2019), 317–325 (in Russian) | DOI | MR
[12] Karpov V. V., Ignatev O. V., Semenov A. A., “The stress-strain state of ribbed shell structures”, Magazine of Civil Engineering, 2017, no. 6(74), 147–160 | DOI
[13] Dzhabrailov A. Sh., Klochkov Yu. V., Marchenko S. S., Nikolaev A. P., “The finite element approximation of vector fields in curvilinear coordinates”, Russian Aeronautics, 50:2 (2007), 115–120 | DOI
[14] Sedov L. I., Continuum Mechanics, in 2 vols., v. 1, Nauka, M., 1976, 492 pp. (in Russian) | MR
[15] Malinin N. N., Applied Theory of Plasticity and Creep, Mashinostroenie, M., 1975, 400 pp. (in Russian)
[16] Ilyushin A. A., Plastic. Elastic-plastic Deformation, Lenand, St. Petersburg, 2018, 352 pp. (in Russian)
[17] Klochkov Yu. V., Nikolaev A. P., Dzhabrailov A. Sh., “A finite element analysis of axisymmetric loaded shells of revolution with a branching meridian under elastic-plastic deforming”, Structural Mechanics of Engineering Constructions and Buildings, 2013, no. 3, 50–56 (in Russian)