Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_1_a2, author = {S. M. Ratseev and O. I. Cherevatenko}, title = {Decoding algorithms for {Goppa} codes with errors and erasures}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {28--47}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a2/} }
TY - JOUR AU - S. M. Ratseev AU - O. I. Cherevatenko TI - Decoding algorithms for Goppa codes with errors and erasures JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 28 EP - 47 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a2/ LA - ru ID - ISU_2022_22_1_a2 ER -
%0 Journal Article %A S. M. Ratseev %A O. I. Cherevatenko %T Decoding algorithms for Goppa codes with errors and erasures %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 28-47 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a2/ %G ru %F ISU_2022_22_1_a2
S. M. Ratseev; O. I. Cherevatenko. Decoding algorithms for Goppa codes with errors and erasures. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 1, pp. 28-47. http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a2/
[1] Status Report on the First Round of the NIST Post-Quantum Cryptography Standardization Process. National Institute of Standards and Technology. Internal Report 8240, January 2019, 27 pp. | DOI
[2] Goppa V. D., “A New Class of Linear Correcting Codes”, Problems of Information Transmission, 6:3 (1970), 207–212 | MR | Zbl
[3] MacWilliams F. J., Sloane N. J. A., The Theory of Error Correcting Codes, North-Holland Pub. Co, Amsterdam–New York, 1977, 762 pp. | MR | Zbl
[4] Blahut R. E., Theory and Practice of Error Control Codes, Addison-Wesley Pub. Co, Reading, Mass., 1983, 500 pp. | MR | MR | Zbl
[5] Gao S., “A new algorithm for decoding Reed–Solomon codes”, Communications, Information and Network Security, 712, eds. V. Bhargava, H. V. Poor, V. Tarokh, S. Yoon, Kluwer, Norwell, MA, 2003, 55–68 | DOI
[6] Huffman W. C., Pless V., Fundamentals of Error-Correcting Codes, Cambridge University Press, New York–Cambridge, 2003, 646 pp. | MR | Zbl
[7] Ratseev S. M., Elements of Higher Algebra and Coding Theory, Lan', St. Petersburg, 2022, 656 pp. (in Russian)
[8] Fedorenko S. V., “Simple algorithm for decoding algebraic codes”, Information and Control Systems, 2008, no. 3, 23–27 (in Russian)
[9] Gohberg I., Olshevsky V., “The fast generalized Parker–Traub algorithm for inversion of Vandermonde and related matrices”, Journal of Complexity, 13:2 (1997), 208–234 | DOI | MR | Zbl
[10] Yan S., Yang A., “Explicit algorithm to the inverse of Vandermonde matrix”, 2009 International Conference on Test and Measurement (Hong Kong, 2009), 176–179 | DOI
[11] Rawashdeh E. A., “A simple method for finding the inverse matrix of Vandermonde matrix”, MATEMATIC̆KI VESNIK, 71:3 (2019), 207–213 | MR | Zbl
[12] Ratseev S. M., Cherevatenko O. I., “On decoding algorithms for generalized Reed–Solomon codes with errors and erasures”, Vestnik of Samara University. Natural Science Series, 26:3 (2020), 17–29 (in Russian) | DOI | MR