Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_1_a0, author = {S. A. Dukhnovskii}, title = {New exact solutions for the two-dimensional {Broadwell} system}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {4--14}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a0/} }
TY - JOUR AU - S. A. Dukhnovskii TI - New exact solutions for the two-dimensional Broadwell system JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 4 EP - 14 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a0/ LA - en ID - ISU_2022_22_1_a0 ER -
S. A. Dukhnovskii. New exact solutions for the two-dimensional Broadwell system. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 1, pp. 4-14. http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a0/
[1] Radkevich E. V., “On the large-time behavior of solutions to the Cauchy problem for a 2-dimensional discrete kinetic equation”, Journal of Mathematical Sciences, 202:5 (2014), 735–768 | DOI | MR | Zbl
[2] Godunov S. K., Sultangazin U. M., “On discrete models of the kinetic Boltzmann equation”, Russian Mathematical Surveys, 26:3 (1971), 1–56 | DOI | MR
[3] Wazwaz A. M., “A sine-cosine method for handing nonlinear wave equations”, Mathematical and Computer Modelling, 40:5–6 (2004), 499–508 | DOI | MR | Zbl
[4] Wazwaz A. M., “The tanh and the sine-cosine methods for the complex modified KdV and the generalized KdV equations”, Computers and Mathematics with Applications, 49:7–8 (2005), 1101–1112 | DOI | MR | Zbl
[5] Alam M. N., Alam M. M., “An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules”, Journal of Taibah University for Science, 11:6 (2017), 939–948 | DOI
[6] Jafari H., Kadkhoda N., Biswas A., “The $G'/G$-expansion method for solutions of evolution equations from isothermal magnetostatic atmospheres”, Journal of King Saud University — Science, 25:1 (2013), 57–62 | DOI
[7] Alam M. N., Akbar M. A., Mohyud-Din S. T., “General traveling wave solutions of the strain wave equation in microstructured solids via the new approach of generalized $G'/G$-expansion method”, Alexandria Engineering Journal, 53:1 (2014), 233–241 | DOI | MR
[8] Fan E., Zhang H., “A note on the homogeneous balance method”, Physics Letters A, 246:5 (1998), 403–406 | DOI | MR | Zbl
[9] Bai C. L., “Extended homogeneous balance method and Lax pairs, Bäcklund transformation”, Communications in Theoretical Physics, 37:6 (2002), 645–648 | DOI | MR | Zbl
[10] Alharbi A. R., Almatrafi M. B., “New exact and numerical solutions with their stability for Ito integro-differential equation via Riccati–Bernoulli sub-ODE method”, Journal of Taibah University for Science, 14:1 (2020), 1447–1456 | DOI
[11] Yang X. F., Deng Z. C., Wei Y., “A Riccati–Bernoulli sub-ODE method for nonlinear partial differential equations and its application”, Advances in Continuous and Discrete Models, 2015:117 (2015), 1–17 | DOI | MR
[12] Alquran M., Jarrah A., “Jacobi elliptic function solutions for a two-mode KdV equation”, Journal of King Saud University — Science, 31:4 (2019), 485–489 | DOI
[13] Zhang W., “The extended tanh method and the exp-function method to solve a kind of nonlinear heat equation”, Mathematical Problems in Engineering, 2010, 935873, 12 pp. | DOI | MR | Zbl
[14] He J. H., Wu X. H., “Exp-function method for nonlinear wave equations”, Chaos, Solitons Fractals, 30:3 (2006), 700–708 | DOI | MR | Zbl
[15] Gaber A. A., Aljohani A. F., Ebaid A., Tenreiro Machado J., “The generalized Kudryashov method for nonlinear space-time fractional partial differential equations of Burgers type”, Nonlinear Dynamics, 95:3 (2019), 361–368 | DOI | MR | Zbl
[16] Nizovtseva I. G., Galenko P. K., Alexandrov D. V., Vikharev S. V., Titova E. A., Sukhachev I. S., “Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic Allen–Cahn equation”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:2 (2016), 245–257 (in Russian) | DOI | MR | Zbl
[17] Tchier F., Inc M., Yusuf A., “Symmetry analysis, exact solutions and numerical approximations for the space-time Carleman equation in nonlinear dynamical systems”, The European Physical Journal Plus, 134:250 (2019), 1–18 | DOI
[18] Dukhnovskii S. A., “Solutions of the Carleman system via the Painlevé expansion”, Vladikavkaz Mathematical Journal, 22:4 (2020), 58–67 (in Russian) | DOI | MR | Zbl
[19] Lindblom O., Euler N., “Solutions of discrete-velocity Boltzmann equations via Bateman and Riccati equations”, Theoretical and Mathematical Physics, 131:2 (2002), 595–608 | DOI | MR | Zbl
[20] Dukhnovskii S. A., “Asymptotic stability of equilibrium states for Carleman and Godunov–Sultangazin systems of equations”, Moscow University Mathematics Bulletin, 74:6 (2019), 246–248 | DOI | MR | Zbl
[21] Vasil'eva O. A., Dukhnovskii S. A., Radkevich E. V., “On the nature of local equilibrium in the Carleman and Godunov–Sultangazin equations”, Journal of Mathematical Sciences, 235 (2018), 392–454 | DOI | MR