Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_4_a8, author = {M. S. Bespalov}, title = {Wavelet $p$-analogs of the discrete {Haar} transform}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {520--531}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a8/} }
TY - JOUR AU - M. S. Bespalov TI - Wavelet $p$-analogs of the discrete Haar transform JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 520 EP - 531 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a8/ LA - ru ID - ISU_2021_21_4_a8 ER -
M. S. Bespalov. Wavelet $p$-analogs of the discrete Haar transform. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 4, pp. 520-531. http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a8/
[1] Malozemov V. N., Macharskiy S. M., Basics of Discrete Harmonic Analysis, Lan', St. Petersburg, 2012, 304 pp. (in Russian)
[2] Novikov I. J., Stechkin S. B., “Basic wavelet theory”, Russian Mathematical Surveys, 53:6 (1998), 1159–1231 | DOI | DOI
[3] Novikov I. J., Protasov V. J., Skopina M. A., Wavelet Theory, Fizmatlit, M., 2005, 616 pp. (in Russian)
[4] Golubov B. I., Efimov A. V., Skvortsov V. A., Walsh Series and Transforms. Theory and Applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 1991, 360 pp.
[5] Bespalov M. S., Sklyarenko V. A., Discrete Walsh Functions and its Applications, VlSU, Vladimir, 2014, 68 pp. (in Russian)
[6] Zalmanzon L. A., Fourier, Walsh, Haar Transforms and Their Applications in Control, Communication and Other Fields, Nauka, M., 1989, 496 pp. (in Russian)
[7] Dagman Je. E., Kucharev G. A., Fast Discrete Orthogonal Transforms, Nauka, Novosibirsk, 1983, 232 pp. (in Russian)
[8] Masharsky S. M., Malozemov V. N., “Haar spectra of discrete convolutions”, Computational Mathematics and Mathematical Physics, 40:6 (2000), 914–921
[9] Bellman R., Introduction to Matrix Analysis, Mcgray-Hill Book Company, New York–Toronto–London, 1960, 372 pp.
[10] Trahtman A. M., Trahtman V. A., Foundations of the Theory of Discrete Signals at Finite Intervals, Sovetskoe radio, M., 1975, 208 pp. (in Russian)
[11] Bespalov M. S., “Bernoulli's discrete periodic functions”, Applied Discrete Mathematics, 2019, no. 43, 16–36 | DOI
[12] Lukomskii S. F., “Haar series on compact zero-dimensional abelian group”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 9:1 (2009), 14–19 (in Russian) | DOI
[13] Bespalov M. S., “Ternary discrete wavelet basis”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 20:3 (2020), 367–377 (in Russian) | DOI
[14] Bespalov M. S., “Discrete Chrestenson transform”, Problems of Information Transmission, 46:4 (2010), 353–375 | DOI
[15] Efimov A. V., “A bound on Fourier coefficients according to the Chrestenson – Levy system in ag-locally integral metric”, Mathematical Notes, 48:4 (1990), 992–997 | DOI