Wavelet $p$-analogs of the discrete Haar transform
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 4, pp. 520-531.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two $p$-analogs (for $p>2$) of the discrete version of the Haar system in vector symbolism are proposed and fast algorithms are constructed based on them. The main wavelet principles for constructing these Haar-like systems are proposed, such as the presence of several parent functions, $p$-ary dilations and shifts. One of the systems retains an orthogonality property. The calculation procedure has been simplified for another almost orthogonal system. The developed algorithms are presented with decimation in time, methods of their representation with decimation in frequency are indicated.
@article{ISU_2021_21_4_a8,
     author = {M. S. Bespalov},
     title = {Wavelet $p$-analogs of the discrete {Haar} transform},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {520--531},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a8/}
}
TY  - JOUR
AU  - M. S. Bespalov
TI  - Wavelet $p$-analogs of the discrete Haar transform
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2021
SP  - 520
EP  - 531
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a8/
LA  - ru
ID  - ISU_2021_21_4_a8
ER  - 
%0 Journal Article
%A M. S. Bespalov
%T Wavelet $p$-analogs of the discrete Haar transform
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2021
%P 520-531
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a8/
%G ru
%F ISU_2021_21_4_a8
M. S. Bespalov. Wavelet $p$-analogs of the discrete Haar transform. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 4, pp. 520-531. http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a8/

[1] Malozemov V. N., Macharskiy S. M., Basics of Discrete Harmonic Analysis, Lan', St. Petersburg, 2012, 304 pp. (in Russian)

[2] Novikov I. J., Stechkin S. B., “Basic wavelet theory”, Russian Mathematical Surveys, 53:6 (1998), 1159–1231 | DOI | DOI

[3] Novikov I. J., Protasov V. J., Skopina M. A., Wavelet Theory, Fizmatlit, M., 2005, 616 pp. (in Russian)

[4] Golubov B. I., Efimov A. V., Skvortsov V. A., Walsh Series and Transforms. Theory and Applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 1991, 360 pp.

[5] Bespalov M. S., Sklyarenko V. A., Discrete Walsh Functions and its Applications, VlSU, Vladimir, 2014, 68 pp. (in Russian)

[6] Zalmanzon L. A., Fourier, Walsh, Haar Transforms and Their Applications in Control, Communication and Other Fields, Nauka, M., 1989, 496 pp. (in Russian)

[7] Dagman Je. E., Kucharev G. A., Fast Discrete Orthogonal Transforms, Nauka, Novosibirsk, 1983, 232 pp. (in Russian)

[8] Masharsky S. M., Malozemov V. N., “Haar spectra of discrete convolutions”, Computational Mathematics and Mathematical Physics, 40:6 (2000), 914–921

[9] Bellman R., Introduction to Matrix Analysis, Mcgray-Hill Book Company, New York–Toronto–London, 1960, 372 pp.

[10] Trahtman A. M., Trahtman V. A., Foundations of the Theory of Discrete Signals at Finite Intervals, Sovetskoe radio, M., 1975, 208 pp. (in Russian)

[11] Bespalov M. S., “Bernoulli's discrete periodic functions”, Applied Discrete Mathematics, 2019, no. 43, 16–36 | DOI

[12] Lukomskii S. F., “Haar series on compact zero-dimensional abelian group”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 9:1 (2009), 14–19 (in Russian) | DOI

[13] Bespalov M. S., “Ternary discrete wavelet basis”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 20:3 (2020), 367–377 (in Russian) | DOI

[14] Bespalov M. S., “Discrete Chrestenson transform”, Problems of Information Transmission, 46:4 (2010), 353–375 | DOI

[15] Efimov A. V., “A bound on Fourier coefficients according to the Chrestenson – Levy system in ag-locally integral metric”, Mathematical Notes, 48:4 (1990), 992–997 | DOI