Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_4_a5, author = {Yu. A. Blinkov and M. D. Malykh and L. A. Sevastianov}, title = {On differential approximations of difference schemes}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {472--488}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a5/} }
TY - JOUR AU - Yu. A. Blinkov AU - M. D. Malykh AU - L. A. Sevastianov TI - On differential approximations of difference schemes JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 472 EP - 488 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a5/ LA - ru ID - ISU_2021_21_4_a5 ER -
%0 Journal Article %A Yu. A. Blinkov %A M. D. Malykh %A L. A. Sevastianov %T On differential approximations of difference schemes %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2021 %P 472-488 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a5/ %G ru %F ISU_2021_21_4_a5
Yu. A. Blinkov; M. D. Malykh; L. A. Sevastianov. On differential approximations of difference schemes. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 4, pp. 472-488. http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a5/
[1] Godunov S. K., “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics”, Matematicheskii Sbornik, 47:3 (1959), 271–306 (in Russian)
[2] Yanenko N. N., Shokin Yu. I., “The first differential approximation of difference schemes for hyperbolic systems of equations”, Siberian Mathematical Journal, 10:5 (1969), 868–880 | DOI
[3] Shokin Yu. I., Differential Approximation Method, Nauka, AN SSSR, Novosibirsk, 1979, 222 pp. (in Russian)
[4] Shokin Yu. I., Yanenko N. N., Differential Approximation Method. Application to Gas Dynamics, Nauka, AN SSSR, Novosibirsk, 1985, 364 pp. (in Russian)
[5] Levin A., Difference Algebra, Springer, 2008, 521 pp. | DOI
[6] van der Put M., Singer M. F., Galois Theory of Difference Equations, Springer, 1997, 188 pp. | DOI
[7] Hendriks P. A., Algebraic aspects of linear differential and difference equations, PhD thesis, University of Groningen, 1996, 106 pp.
[8] Weierstrass K., “Über der Theorie der analytischen Facultäten”, Mathematische werke, v. 1, Mayer Müller, Berlin, 1894, 153–221
[9] Grammaticos B., Nijhoff F. W., Ramani A., “Discrete Painleve equations”, The Painleve Property, One Century Later, Springer, Berlin–Heidelberg, 1999, 413–516
[10] Vasil'eva A. B., Butuzov V. F., Asymptotic Methods in the Theory of Singular Perturbations, Vysshaja shkola, M., 1990, 208 pp. (in Russian)
[11] Kalitkin N. N., Al'shin A. B., Al'shina E. A., Rogov B. V., Calculations on Quasi-uniform Grids, Nauka. Fizmatlit, M., 2005, 204 pp. (in Russian)
[12] Bruno A. D., Solving an Algebraic Equation by Algorithms of Power Geometry, Nauka, M., 1998, 288 pp. (in Russian)
[13] Bruno A. D. Power Geometry in Algebraic and Differential Equations, Preprinty IPM, 2017, 034, 18 pp. (in Russian)
[14] Zhang Xiaojing, Gerdt V. P., Blinkov Yu. A., “Algebraic Construction of a Strongly Consistent, Permutationally Symmetric and Conservative Difference Scheme for 3D Steady Stokes Flow”, Symmetry, 11:2 (2019) (accessed 10 May 2021) https://www.mdpi.com/2073-8994/11/2/269
[15] Robertz D., Formal Algorithmic Elimination for PDEs, Springer, 2014, 284 pp.
[16] Hans Johnston, Jian-Guo Liu, “Finite difference schemes for incompressible flow based on local pressure boundary conditions”, Journal of Computational Physics, 180 (2002), 120–154