Binary basic splines in MRA
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 4, pp. 458-471

Voir la notice de l'article provenant de la source Math-Net.Ru

$B$-splines were introduced by Carry and Schoenberg. Constructed on a uniform mesh and defined in terms of convolutions, such splines generate a Riesz MRA. We constructed splines $\varphi_n$, where $n$ is the order of integration of the Walsh function with the number $2^n - 1$. We called these splines binary basic splines. We know that binary basic splines form a basis in the space of functions that are continuous on the segment $[0, 1]$ and $0$ outside of it. We proved that binary basic splines are a scaling function and generate an MRA of $(V_n)$ which is not a Riesz MRA. The order of approximation was determined by subspaces from Sobolev spaces.
@article{ISU_2021_21_4_a4,
     author = {S. A. Chumachenko},
     title = {Binary basic splines in {MRA}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {458--471},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a4/}
}
TY  - JOUR
AU  - S. A. Chumachenko
TI  - Binary basic splines in MRA
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2021
SP  - 458
EP  - 471
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a4/
LA  - ru
ID  - ISU_2021_21_4_a4
ER  - 
%0 Journal Article
%A S. A. Chumachenko
%T Binary basic splines in MRA
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2021
%P 458-471
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a4/
%G ru
%F ISU_2021_21_4_a4
S. A. Chumachenko. Binary basic splines in MRA. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 4, pp. 458-471. http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a4/