Binary basic splines in MRA
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 4, pp. 458-471.

Voir la notice de l'article provenant de la source Math-Net.Ru

$B$-splines were introduced by Carry and Schoenberg. Constructed on a uniform mesh and defined in terms of convolutions, such splines generate a Riesz MRA. We constructed splines $\varphi_n$, where $n$ is the order of integration of the Walsh function with the number $2^n - 1$. We called these splines binary basic splines. We know that binary basic splines form a basis in the space of functions that are continuous on the segment $[0, 1]$ and $0$ outside of it. We proved that binary basic splines are a scaling function and generate an MRA of $(V_n)$ which is not a Riesz MRA. The order of approximation was determined by subspaces from Sobolev spaces.
@article{ISU_2021_21_4_a4,
     author = {S. A. Chumachenko},
     title = {Binary basic splines in {MRA}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {458--471},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a4/}
}
TY  - JOUR
AU  - S. A. Chumachenko
TI  - Binary basic splines in MRA
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2021
SP  - 458
EP  - 471
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a4/
LA  - ru
ID  - ISU_2021_21_4_a4
ER  - 
%0 Journal Article
%A S. A. Chumachenko
%T Binary basic splines in MRA
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2021
%P 458-471
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a4/
%G ru
%F ISU_2021_21_4_a4
S. A. Chumachenko. Binary basic splines in MRA. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 4, pp. 458-471. http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a4/

[1] Schoenberg I. J., “On spline functions (with a supplement by T. N. E. Greville)”, Inequalities I, ed. O. Shisha, Academic Press, New York, 1967, 255–291

[2] de Boor C., A Practical Guide to Spline, Mathematics of Computation, 27, American Mathematical Society, New York, 1978, 348 pp.

[3] Ahlberg J. H., Nilson E. N., Walsh J. L., The Theory of Splines and Their Applications, Mathematics in Science and Engineering: A Series of Monographs and Textbooks, 38, Academic Press, 1967, 296 pp.

[4] Kashin B. S., Saakian A. A., Ortogonal Series, AFC, M., 1999, 550 pp. (in Russian)

[5] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Wavelet Theory, Translations of Mathematical Monographs, 239, American Mathematical Society, Providence, 2011, 506 pp.

[6] Battle G., “A block spin construction of ondelettes. Part 1: Lemarié functions”, Communications in Mathematical Physics, 110:4 (1987), 601–615 | DOI

[7] Lemarie P.-G., Meyer Y., “Ondelettes et bases Hilbertiennes”, Revista Matemática Iberoamericana, 2:1–2 (1986), 1–18

[8] Chumachenko S. A., “One analogue of Faber – Schauder system”, Trudy matematicheskogo tsentra imeni N. I. Lobachevskogo, 53, Kazan, 2016, 163–164 (in Russian)

[9] Chumachenko S. A., “Binary-scaling spline functions”, Trudy matematicheskogo tsentra imeni N. I. Lobachevskogo, 54, Kazan, 2017, 403 (in Russian)

[10] Lukomskii S. F., Mushko M. D., “On binary B-splines of second order”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 18:2 (2018), 172–182 (in Russian) | DOI

[11] Lukomskii S. F., Terekhin P. A., Chumachenko S. A., “Rademacher chaoses in problems of constructing spline affine systems”, Mathematical Notes, 103:6 (2018), 863–874 | DOI

[12] Chumachenko S. A., “Smooth approximation in $C[0, 1]$”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 20:3 (2020), 326–342 (in Russian) | DOI

[13] Zhao H., Mathematics in Image Processing, Park City Mathematics Series, 19, IAS, 2013, 245 pp. | DOI