Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_4_a2, author = {V. A. Kozlov and G. N. Titov}, title = {The structure of groups with cyclic commutator subgroups indecomposable to a subdirect product of groups}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {442--447}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a2/} }
TY - JOUR AU - V. A. Kozlov AU - G. N. Titov TI - The structure of groups with cyclic commutator subgroups indecomposable to a subdirect product of groups JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 442 EP - 447 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a2/ LA - ru ID - ISU_2021_21_4_a2 ER -
%0 Journal Article %A V. A. Kozlov %A G. N. Titov %T The structure of groups with cyclic commutator subgroups indecomposable to a subdirect product of groups %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2021 %P 442-447 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a2/ %G ru %F ISU_2021_21_4_a2
V. A. Kozlov; G. N. Titov. The structure of groups with cyclic commutator subgroups indecomposable to a subdirect product of groups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 4, pp. 442-447. http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a2/
[1] Gorchakov Yu. M., The Theory of Groups, TSU, Tver, 1998, 112 pp. (in Russian)
[2] Gorchakov Yu. M., Groups with Finite Conjugacy Classes, Nauka, M., 1978, 120 pp. (in Russian)
[3] Kargapolov M. I., Merzljakov Ju. I., Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1979, 203 pp.
[4] Cheng Y., “On finite $p$-groups with cyclic commutator subgroup”, Archiv der Mathematik, 39:4 (1982), 295–298 | DOI
[5] Dark R. S., Newell M. L., “On conditions for commutators to form a subgroup”, Journal of the London Mathematical Society, s2–17:2 (1978), 251–162 | DOI
[6] Leong Y. K., “Odd order nilpotent groups of class two with cyclic center”, Journal of the Australian Mathematical Society, 17:2 (1974), 142–153 | DOI
[7] Leong Y. K., “Finite 2-groups of class two with cyclic center”, Journal of the Australian Mathematical Society, 27:2 (1979), 125–140 | DOI
[8] Miech R. J., “On $p$-groups with cyclic commutator subgroup”, Journal of the Australian Mathematical Society, 20:2 (1975), 178–198 | DOI
[9] Finogenov A. A., “Finite $p$-groups with cyclic commutator subgroup and cyclic center”, Mathematical Notes, 63:6 (1998), 802–812 | DOI | DOI
[10] Skuratovskii R. V., “Commutator subgroup of Sylow 2-subgroups of alternating group and the commutator width in the wreath product”, Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2020, no. 1, 3–16
[11] Hall M., The Theory of Groups, Inostrannaya literatura, M., 1962, 468 pp. (in Russian)
[12] Chernikov S. N., Groups with Given Properties of a System of Subgroups, Nauka, M., 1980, 384 pp. (in Russian)
[13] Shemetkov L. A., Formations of Finite Groups, Nauka, M., 1978, 272 pp. (in Russian)