The structure of groups with cyclic commutator subgroups indecomposable to a subdirect product of groups
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 4, pp. 442-447 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article studies finite groups indecomposable to subdirect product of groups (subdirectly irreducible groups), commutator subgroups of which are cyclic subgroups. The article proves that extensions of a primary cyclic group by any subgroup of its automorphisms completely describe the structure of non-primary finite subdirectly irreducible groups with a cyclic commutator subgroup. The following theorem is the main result of this article: a finite non-primary group is subdirectly irreducible with a cyclic commutator subgroup if and only if for some prime number $p\geq 3$ it contains a non-trivial normal cyclic $p$-subgroup that coincides with its centralizer in the group. In addition, it is shown that the requirement of non-primality in the statement of the theorem is essential.
@article{ISU_2021_21_4_a2,
     author = {V. A. Kozlov and G. N. Titov},
     title = {The structure of groups with cyclic commutator subgroups indecomposable to a subdirect product of groups},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {442--447},
     year = {2021},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a2/}
}
TY  - JOUR
AU  - V. A. Kozlov
AU  - G. N. Titov
TI  - The structure of groups with cyclic commutator subgroups indecomposable to a subdirect product of groups
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2021
SP  - 442
EP  - 447
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a2/
LA  - ru
ID  - ISU_2021_21_4_a2
ER  - 
%0 Journal Article
%A V. A. Kozlov
%A G. N. Titov
%T The structure of groups with cyclic commutator subgroups indecomposable to a subdirect product of groups
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2021
%P 442-447
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a2/
%G ru
%F ISU_2021_21_4_a2
V. A. Kozlov; G. N. Titov. The structure of groups with cyclic commutator subgroups indecomposable to a subdirect product of groups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 4, pp. 442-447. http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a2/

[1] Gorchakov Yu. M., The Theory of Groups, TSU, Tver, 1998, 112 pp. (in Russian)

[2] Gorchakov Yu. M., Groups with Finite Conjugacy Classes, Nauka, M., 1978, 120 pp. (in Russian)

[3] Kargapolov M. I., Merzljakov Ju. I., Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1979, 203 pp.

[4] Cheng Y., “On finite $p$-groups with cyclic commutator subgroup”, Archiv der Mathematik, 39:4 (1982), 295–298 | DOI

[5] Dark R. S., Newell M. L., “On conditions for commutators to form a subgroup”, Journal of the London Mathematical Society, s2–17:2 (1978), 251–162 | DOI

[6] Leong Y. K., “Odd order nilpotent groups of class two with cyclic center”, Journal of the Australian Mathematical Society, 17:2 (1974), 142–153 | DOI

[7] Leong Y. K., “Finite 2-groups of class two with cyclic center”, Journal of the Australian Mathematical Society, 27:2 (1979), 125–140 | DOI

[8] Miech R. J., “On $p$-groups with cyclic commutator subgroup”, Journal of the Australian Mathematical Society, 20:2 (1975), 178–198 | DOI

[9] Finogenov A. A., “Finite $p$-groups with cyclic commutator subgroup and cyclic center”, Mathematical Notes, 63:6 (1998), 802–812 | DOI | DOI

[10] Skuratovskii R. V., “Commutator subgroup of Sylow 2-subgroups of alternating group and the commutator width in the wreath product”, Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2020, no. 1, 3–16

[11] Hall M., The Theory of Groups, Inostrannaya literatura, M., 1962, 468 pp. (in Russian)

[12] Chernikov S. N., Groups with Given Properties of a System of Subgroups, Nauka, M., 1980, 384 pp. (in Russian)

[13] Shemetkov L. A., Formations of Finite Groups, Nauka, M., 1978, 272 pp. (in Russian)