Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_4_a10, author = {M. G. Persova and Yu. G. Soloveichik and I. I. Patrushev and A. S. Ovchinnikova}, title = {Numerical simulation of oil production using surfactant-polymer flooding}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {544--558}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a10/} }
TY - JOUR AU - M. G. Persova AU - Yu. G. Soloveichik AU - I. I. Patrushev AU - A. S. Ovchinnikova TI - Numerical simulation of oil production using surfactant-polymer flooding JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 544 EP - 558 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a10/ LA - ru ID - ISU_2021_21_4_a10 ER -
%0 Journal Article %A M. G. Persova %A Yu. G. Soloveichik %A I. I. Patrushev %A A. S. Ovchinnikova %T Numerical simulation of oil production using surfactant-polymer flooding %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2021 %P 544-558 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a10/ %G ru %F ISU_2021_21_4_a10
M. G. Persova; Yu. G. Soloveichik; I. I. Patrushev; A. S. Ovchinnikova. Numerical simulation of oil production using surfactant-polymer flooding. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 4, pp. 544-558. http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a10/
[1] Aziz K., Settari A., Petroleum reservoir simulation, Applied Science Publishers, London, 1979, 476 pp.
[2] Doyle B., Riviere B., Sekachev M., “A multinumerics scheme for incompressible two-phase flow”, Computer Methods in Applied Mechanics and Engineering, 370 (2020), 113213 | DOI
[3] Abd A., Abushaikha A., “Velocity dependent up-winding scheme for node control volume finite element method for fluid flow in porous media”, Scientific Reports, 10 (2020), 4427 | DOI
[4] Abushaikha A. S., Blunt M. J., Gosselin O. R., Pain C. C., Jackson M. D., “Interface control volume finite element method for modelling multi-phase fluid flow in highly heterogeneous and fractured reservoirs”, Journal of Computational Physics, 298 (2015), 41–61 | DOI
[5] Schmid K. S., Geiger S., Sorbie K. S., “Higher order FE-FV method on unstructured grids for transport and two-phase flow with variable viscosity in heterogeneous porous media”, Journal of Computational Physics, 241 (2013), 416–444 | DOI
[6] Zhang N., Yan B., Sun Q., Wang Y., “Improving multiscale mixed finite element method for flow simulation in highly heterogeneous reservoir using adaptivity”, Journal of Petroleum Science and Engineering, 154 (2017), 382–388 | DOI
[7] Moortgat J., Firoozabadi A., “Higher-order compositional modeling of three-phase flow in 3D fractured porous media based on cross-flow equilibrium”, Journal of Computational Physics, 250 (2013), 425–445 | DOI
[8] Amooie M. A., Moortgat J., “Higher-order black-oil and compositional modeling of multiphase compressible flow in porous media”, International Journal of Multiphase Flow, 105 (2017), 45–59 | DOI
[9] Deng Q., Ginting V., “Locally conservative continuous Galerkin FEM for pressure equation in two-phase flow model in subsurfaces”, Journal of Scientific Computing, 74 (2017), 1264–1285 | DOI
[10] Odsæter L. H., Wheeler M. F., Kvamsdal T., Larson M. G., “Postprocessing of non-conservative flux for compatibility with transport in heterogeneous media”, Computer Methods in Applied Mechanics and Engineering, 315 (2017), 799–830 | DOI
[11] Persova M. G., Soloveichik Yu. G., Grif A. M., Patrushev I. I., “Flow balancing in FEM modelling of multi-phase flow in porous media”, 14th International Scientific-Technical Conference on Actual Problems of Electronic Instrument Engineering, APEIE 2018 (Novosibirsk, 2018), 2018, 205–211 | DOI
[12] Persova M. G., Soloveichik Yu. G., Vagin D. V., Grif A. M., Kiselev D. S., Patrushev I. I., Nasybullin A. V., Ganiev B. G., “The design of high-viscosity oil reservoir model based on the inverse problem solution”, Journal of Petroleum Science and Engineering, 199 (2021), 108245 | DOI
[13] Persova M. G., Soloveichik Yu. G., Vagin D. V., Grif A. M., Patrushev I. I., Ovchinnikova A. S., “Oil production optimization based on the finite-element simulation of the multi-phase flow in porous media and inverse problem solution”, GeoBaikal 2020 (EAGE) : Conference Proceedings (Irkutsk, 2020), 2020, 1–6 | DOI
[14] Patacchini L., De Loubens R., Moncorgé A., Trouillaud A., “Four-fluid-phase, fully implicit simulation of surfactant flooding”, SPE Reservoir Evaluation and Engineering, 17 (2014), 271–285 | DOI
[15] Massarweh O., Abushaikha A. S., “The use of surfactants in enhanced oil recovery: A review of recent advances”, Energy Reports, 6 (2020), 3150–3178 | DOI
[16] Lopes L. F., Silveira B. M. O, Moren R. B. Z. L., “Rheological Evaluation of HPAM fluids for EOR Applications”, International Journal of Engineering and Technology, 14 (2014), 35–41
[17] Persova M. G., Soloveichik Y. G., Vagin D. V., Kiselev D. S., Koshkina Yu. I., “Finite element solution to 3-D airborne time-domain electromagnetic problems in complex geological media using non-conforming hexahedral meshes”, Journal of Applied Geophysics, 172 (2020), 103911 | DOI
[18] Persova M. G., Soloveichik Y. G., Ovchinnikova A. S., Patrushev I. I., Nasybullin A. V., Orekhov E. V., “Numerical 3D simulation of enhanced oil recovery methods for high-viscosity oil field”, IOP Conference Series: Materials Science and Engineering, 1019 (2021), 012050 | DOI
[19] Fink J. K., “Chapter 16 — Enhanced oil recovery”, Petroleum Engineer's Guide to Oil Field Chemicals and Fluids, ed. J. Fink. Elsevier, 2015, 477–565 | DOI
[20] Christie M. A., Blunt M. J., “Tenth SPE comparative solution project: A comparison of upscaling techniques”, SPE Reservoir Evaluation and Engineering, 2001, 308–316 | DOI
[21] Corey A. T., “The interelationship between gas and oil relative permeabilities”, Producers Monthly, 1 (1954), 38–41