On the convergence of the order-preserving weak greedy algorithm for subspaces generated by the Szeg\"o kernel in the Hardy space
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 3, pp. 336-342.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider representing properties of subspaces generated by the Szegö kernel. We examine under which conditions on the sequence of points of the unit disk the order-preserving weak greedy algorithm for appropriate subspaces generated by the Szegö kernel converges. Previously, we constructed a representing system based on discretized Szegö kernels. The aim of this paper is to find an effective algorithm to get such representation, and we draw on the work of Silnichenko that introduced the notion of the order-preserving weak greedy algorithm. By selecting a special sequence of discretization points we refine one of Totik's results on the approximation of functions in the Hardy space using Szegö kernels. As the main result we prove the convergence criteria of the order-preserving weak greedy algorithm for subspaces generated by the Szegö kernel in the Hardy space.
@article{ISU_2021_21_3_a5,
     author = {K. S. Speransky},
     title = {On the convergence of the order-preserving weak greedy algorithm for subspaces generated by the {Szeg\"o} kernel in the {Hardy} space},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {336--342},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a5/}
}
TY  - JOUR
AU  - K. S. Speransky
TI  - On the convergence of the order-preserving weak greedy algorithm for subspaces generated by the Szeg\"o kernel in the Hardy space
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2021
SP  - 336
EP  - 342
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a5/
LA  - en
ID  - ISU_2021_21_3_a5
ER  - 
%0 Journal Article
%A K. S. Speransky
%T On the convergence of the order-preserving weak greedy algorithm for subspaces generated by the Szeg\"o kernel in the Hardy space
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2021
%P 336-342
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a5/
%G en
%F ISU_2021_21_3_a5
K. S. Speransky. On the convergence of the order-preserving weak greedy algorithm for subspaces generated by the Szeg\"o kernel in the Hardy space. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 3, pp. 336-342. http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a5/

[1] Duren P. L., Theory of $H^p$ Spaces, Academic Press, New York, 1970, 258 pp.

[2] Duren P. L., Schuster A. P., Bergman Spaces, Mathematical Surveys and Monographs, 10, AMS, Providence, 2004, 318 pp. | DOI

[3] Partington J., Interpolation, Identification, and Sampling, London Mathematical Society Monographs, 17, Oxford University Press, Oxford; Clarendon Press, New York, 1997, 288 pp. | Zbl

[4] Halmos P. R., A Hilbert Space Problem Book, Graduate Texts in Mathematics, 19, Springer-Verlag, New York, 1982, 369 pp. | DOI | Zbl

[5] Fricain E., Khoi L., Lefèvre P., “Representing systems generated by reproducing kernels”, Indagationes Mathematicae, 29:3 (2018), 860–872 | DOI | Zbl

[6] Speransky K. S., Terekhin P. A., “A representing system generated by the Szegö kernel for the Hardy space”, Indagationes Mathematicae, 29:5 (2018), 1318–1325 | DOI | Zbl

[7] Terekhin P. A., “Frames in Banach Spaces”, Functional Analysis and Its Applications, 44:3 (2010), 199–208 | DOI | Zbl

[8] Speransky K. S., Terekhin P. A., “On existence of frames based on the Szegö kernel in the Hardy space”, Russian Mathematics, 63:2 (2019), 51–61 | DOI | Zbl

[9] Temlyakov V. N., Greedy Approximation, Cambridge University Press, New York, 2011, 418 pp. | DOI | Zbl

[10] Silnichenko A. V., “On the convergence of order-preserving weak greedy algorithms”, Mathematical Notes, 84:5 (2008), 741–747 | DOI

[11] Totik V., “Recovery of $H^p$-functions”, Proceedings of the American Mathematical Society, 90:4 (1984), 531–537 | DOI | Zbl