@article{ISU_2021_21_3_a5,
author = {K. S. Speransky},
title = {On the convergence of the order-preserving weak greedy algorithm for subspaces generated by the {Szeg\"o} kernel in the {Hardy} space},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {336--342},
year = {2021},
volume = {21},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a5/}
}
TY - JOUR AU - K. S. Speransky TI - On the convergence of the order-preserving weak greedy algorithm for subspaces generated by the Szegö kernel in the Hardy space JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 336 EP - 342 VL - 21 IS - 3 UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a5/ LA - en ID - ISU_2021_21_3_a5 ER -
%0 Journal Article %A K. S. Speransky %T On the convergence of the order-preserving weak greedy algorithm for subspaces generated by the Szegö kernel in the Hardy space %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2021 %P 336-342 %V 21 %N 3 %U http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a5/ %G en %F ISU_2021_21_3_a5
K. S. Speransky. On the convergence of the order-preserving weak greedy algorithm for subspaces generated by the Szegö kernel in the Hardy space. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 3, pp. 336-342. http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a5/
[1] Duren P. L., Theory of $H^p$ Spaces, Academic Press, New York, 1970, 258 pp.
[2] Duren P. L., Schuster A. P., Bergman Spaces, Mathematical Surveys and Monographs, 10, AMS, Providence, 2004, 318 pp. | DOI
[3] Partington J., Interpolation, Identification, and Sampling, London Mathematical Society Monographs, 17, Oxford University Press, Oxford; Clarendon Press, New York, 1997, 288 pp. | Zbl
[4] Halmos P. R., A Hilbert Space Problem Book, Graduate Texts in Mathematics, 19, Springer-Verlag, New York, 1982, 369 pp. | DOI | Zbl
[5] Fricain E., Khoi L., Lefèvre P., “Representing systems generated by reproducing kernels”, Indagationes Mathematicae, 29:3 (2018), 860–872 | DOI | Zbl
[6] Speransky K. S., Terekhin P. A., “A representing system generated by the Szegö kernel for the Hardy space”, Indagationes Mathematicae, 29:5 (2018), 1318–1325 | DOI | Zbl
[7] Terekhin P. A., “Frames in Banach Spaces”, Functional Analysis and Its Applications, 44:3 (2010), 199–208 | DOI | Zbl
[8] Speransky K. S., Terekhin P. A., “On existence of frames based on the Szegö kernel in the Hardy space”, Russian Mathematics, 63:2 (2019), 51–61 | DOI | Zbl
[9] Temlyakov V. N., Greedy Approximation, Cambridge University Press, New York, 2011, 418 pp. | DOI | Zbl
[10] Silnichenko A. V., “On the convergence of order-preserving weak greedy algorithms”, Mathematical Notes, 84:5 (2008), 741–747 | DOI
[11] Totik V., “Recovery of $H^p$-functions”, Proceedings of the American Mathematical Society, 90:4 (1984), 531–537 | DOI | Zbl