Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_3_a4, author = {K. M. Rasulov and T. R. Nagornaya}, title = {The explicit solution of the {Neumann} boundary value problem {for~Bauer} differential equation in circular domains}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {326--335}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a4/} }
TY - JOUR AU - K. M. Rasulov AU - T. R. Nagornaya TI - The explicit solution of the Neumann boundary value problem for~Bauer differential equation in circular domains JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 326 EP - 335 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a4/ LA - ru ID - ISU_2021_21_3_a4 ER -
%0 Journal Article %A K. M. Rasulov %A T. R. Nagornaya %T The explicit solution of the Neumann boundary value problem for~Bauer differential equation in circular domains %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2021 %P 326-335 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a4/ %G ru %F ISU_2021_21_3_a4
K. M. Rasulov; T. R. Nagornaya. The explicit solution of the Neumann boundary value problem for~Bauer differential equation in circular domains. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 3, pp. 326-335. http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a4/
[1] Bauer K. W., “Über eine der Differentialgleichung $(1+z\bar{z})^2W_{z\bar{z}}\pm n(n+1)W=0$ zugeordnete Funktionentheorie”, Bonner Mathematische Schriften, 23 (1965), 1–98 (in Germany)
[2] Bauer K. W., Ruscheweyh S., Differential Operators for Partial Differential Equations and Function Theoretic Applications, Lecture Notes in Mathematics, 791, Springer-Verlag, Berlin–Heidelberg–New York, 1980, 264 pp. | DOI | Zbl
[3] Begehr H., Complex Analytic Methods for Partial Differential Equations, World Scientific Publishing, Singapure, 1994, 284 pp. | DOI | Zbl
[4] Begehr H., “Boundary value problems in complex analysis. I”, Boletin de la Asociation Matematica Venezolana, 12:1 (2005), 65–85 | Zbl
[5] Aksoy Ü., Begehr H., Celebi O. A., “A. V. Bitsadze's observation on bianalytic functions and the Schwarz problem”, Complex Variables and Elliptic Equations, 64:8 (2019), 1257–1274 | DOI | Zbl
[6] Rasulov K. M., “On the uniqueness of the solution of the Dirichlet boundary value problem for quasiharmonic functions in a non-unit disk”, Lobachevskii Journal of Mathematics, 39:1 (2018), 142–145 | DOI | Zbl
[7] Davis P., The Schwarz Function and its Applications, Carus Mathematical Monographs, 17, Mathematical Association of America, Washington, 1974, 241 pp. | DOI | Zbl
[8] Adukov V. M., Patrushev A. A., “On explicit and exact solutions of the Markushevich boundary problem for circle”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 11:2 (2011), 9–20 (in Russian) | DOI
[9] Rasulov K. M., Method of Conjugation Analytic Functions and its Applications, Izd-vo SmolGU, Smolensk, 2013, 188 pp. (in Russian)
[10] Gakhov F. D., Boudnary Value Problems, Nauka, M., 1977, 640 pp. (in Russian)
[11] Coddingtin E. A., Levinson N., Theory of Ordinary Differential Equations, McGraw-Hill Companies, 1955, 429 pp.
[12] Goluzin G. M., Geometric Theory of Functions of a Complex Variable, Nauka, M., 1966, 628 pp. (in Russian)