The explicit solution of the Neumann boundary value problem for~Bauer differential equation in circular domains
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 3, pp. 326-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the boundary value problem of Neumann problem's type for solutions of one second-order elliptic differential equation. Based on the general representation of the solutions of the differential equation as two analytical functions of a complex variable, and also taking into account the properties of the Schwarz equations for circles, it is established that in the case of circular domains, the boundary value problem is solved explicitly, i.e., its general solution can be found using only the F. D. Gakhov formulas for solving the scalar Riemann problem for analytic functions of a complex variable, as well as solving a finite number of linear differential equations and (or) systems of linear algebraic equations for which the matrix of the system can be written out in quadratures.
@article{ISU_2021_21_3_a4,
     author = {K. M. Rasulov and T. R. Nagornaya},
     title = {The explicit solution of the {Neumann} boundary value problem {for~Bauer} differential equation in circular domains},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {326--335},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a4/}
}
TY  - JOUR
AU  - K. M. Rasulov
AU  - T. R. Nagornaya
TI  - The explicit solution of the Neumann boundary value problem for~Bauer differential equation in circular domains
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2021
SP  - 326
EP  - 335
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a4/
LA  - ru
ID  - ISU_2021_21_3_a4
ER  - 
%0 Journal Article
%A K. M. Rasulov
%A T. R. Nagornaya
%T The explicit solution of the Neumann boundary value problem for~Bauer differential equation in circular domains
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2021
%P 326-335
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a4/
%G ru
%F ISU_2021_21_3_a4
K. M. Rasulov; T. R. Nagornaya. The explicit solution of the Neumann boundary value problem for~Bauer differential equation in circular domains. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 3, pp. 326-335. http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a4/

[1] Bauer K. W., “Über eine der Differentialgleichung $(1+z\bar{z})^2W_{z\bar{z}}\pm n(n+1)W=0$ zugeordnete Funktionentheorie”, Bonner Mathematische Schriften, 23 (1965), 1–98 (in Germany)

[2] Bauer K. W., Ruscheweyh S., Differential Operators for Partial Differential Equations and Function Theoretic Applications, Lecture Notes in Mathematics, 791, Springer-Verlag, Berlin–Heidelberg–New York, 1980, 264 pp. | DOI | Zbl

[3] Begehr H., Complex Analytic Methods for Partial Differential Equations, World Scientific Publishing, Singapure, 1994, 284 pp. | DOI | Zbl

[4] Begehr H., “Boundary value problems in complex analysis. I”, Boletin de la Asociation Matematica Venezolana, 12:1 (2005), 65–85 | Zbl

[5] Aksoy Ü., Begehr H., Celebi O. A., “A. V. Bitsadze's observation on bianalytic functions and the Schwarz problem”, Complex Variables and Elliptic Equations, 64:8 (2019), 1257–1274 | DOI | Zbl

[6] Rasulov K. M., “On the uniqueness of the solution of the Dirichlet boundary value problem for quasiharmonic functions in a non-unit disk”, Lobachevskii Journal of Mathematics, 39:1 (2018), 142–145 | DOI | Zbl

[7] Davis P., The Schwarz Function and its Applications, Carus Mathematical Monographs, 17, Mathematical Association of America, Washington, 1974, 241 pp. | DOI | Zbl

[8] Adukov V. M., Patrushev A. A., “On explicit and exact solutions of the Markushevich boundary problem for circle”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 11:2 (2011), 9–20 (in Russian) | DOI

[9] Rasulov K. M., Method of Conjugation Analytic Functions and its Applications, Izd-vo SmolGU, Smolensk, 2013, 188 pp. (in Russian)

[10] Gakhov F. D., Boudnary Value Problems, Nauka, M., 1977, 640 pp. (in Russian)

[11] Coddingtin E. A., Levinson N., Theory of Ordinary Differential Equations, McGraw-Hill Companies, 1955, 429 pp.

[12] Goluzin G. M., Geometric Theory of Functions of a Complex Variable, Nauka, M., 1966, 628 pp. (in Russian)