Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_3_a1, author = {V. A. Kyrov}, title = {Analytic embedding of {pseudo-Helmholtz} geometry}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {294--304}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a1/} }
V. A. Kyrov. Analytic embedding of pseudo-Helmholtz geometry. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 3, pp. 294-304. http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a1/
[1] Mikhailichenko G. G., The Mathematical Basics and Results of the Theory of Physical Structures, Publishing house of Gorno-Altaisk State University, Gorno-Altaisk, 2016, 267 pp., arXiv: (accessed 20 October 2020) 1602.02795
[2] Mikhailichenko G. G., “Group and phenomenological symmetries in geometry”, Siberian Mathematical Journal, 25:5 (1984), 764–774 | DOI | Zbl
[3] Lev V. Kh., “Three-dimensional geometries in the theory of physical structures”, Computing Systems, 1988, no. 125, 90–103 (in Russian) | Zbl
[4] Kyrov V. A., “Analytic embedding of some two-dimensional geometries of maximum mobility”, Siberian Electronic Mathematical Reports, 16 (2018), 916–937 (in Russian) | DOI
[5] Ovsyannikov L. V., Group Analysis of Differential Equation, Academic Press, New York, 1982, 400 pp.
[6] Fichtenholz G. M., A Course of Differential and Integral Calculus, v. 2, Fizmatlit, M., 1963, 524 pp. (in Russian)
[7] Schwartz L., Analyse mathematique, v. I, Hermann, Paris, 1967, 824 pp. (in French) | Zbl
[8] Dyakonov V., Maple 10/11/12/13/14 in Mathematical Calculations, DMS Press, M., 2014, 640 pp. (in Russian)