Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_3_a0, author = {M. Yu. Ignatiev}, title = {Reconstruction formula for differential systems with a singularity}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {282--293}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a0/} }
TY - JOUR AU - M. Yu. Ignatiev TI - Reconstruction formula for differential systems with a singularity JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 282 EP - 293 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a0/ LA - en ID - ISU_2021_21_3_a0 ER -
M. Yu. Ignatiev. Reconstruction formula for differential systems with a singularity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 3, pp. 282-293. http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a0/
[1] Brunnhuber R., Kostenko A., Teschl G., “Singular Weyl – Titchmarsh – Kodaira theory for one-dimensional Dirac operators”, Monatshefte für Mathematik, 174 (2014), 515–547 | DOI | Zbl
[2] Albeverio S., Hryniv R., Mykytyuk Ya., “Reconstruction of radial Dirac operators”, Journal of Mathematical Physics, 48 (2007), 043501, 14 pp. | DOI | Zbl
[3] Albeverio S., Hryniv R., Mykytyuk Ya., “Reconstruction of radial Dirac and Schrödinger operators from two spectra”, Journal of Mathematical Analysis and Applications, 339:1 (2008), 45–57 | DOI | Zbl
[4] Serier F., “Inverse spectral problem for singular Ablowitz – Kaup – Newell – Segur operators on [0; 1]”, Inverse Problems, 22:4 (2006), 1457–1484 | DOI | Zbl
[5] Gorbunov O. B., Shieh C.-T., Yurko V. A., “Dirac system with a singularity in an interior point”, Applicable Analysis, 95:11 (2016), 2397–2414 | DOI | Zbl
[6] Beals R., Coifman R. R., “Scattering and inverse scattering for first order systems”, Communications on Pure and Applied Mathematics, 37:1 (1984), 39–90 | DOI | Zbl
[7] Zhou X., “Direct and inverse scattering transforms with arbitrary spectral singularities”, Communications on Pure and Applied Mathematics, 42:7 (1989), 895–938 | DOI | Zbl
[8] Yurko V. A., “Inverse spectral problems for differential systems on a finite interval”, Results in Mathematics, 48:3–4 (2006), 371–386 | DOI
[9] Yurko V. A., “On higher-order differential operators with a singular point”, Inverse Problems, 9:4 (1993), 495–502 | DOI | Zbl
[10] Yurko V. A., Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-Posed Problems Series, 31, VSP, Utrecht, 2002, 303 pp. | DOI
[11] Sibuya Y., “Stokes phenomena”, Bulletin of the American Mathematical Society, 83:5 (1977), 1075–1077 | DOI | Zbl
[12] Ignatyev M., “Spectral analysis for differential systems with a singularity”, Results in Mathematics, 71:3–4 (2017), 1531–1555 | DOI | Zbl
[13] Ignatiev M. Yu., “Asymptotics of solutions of some integral equations connected with differential systems with a singularity”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 20:1 (2020), 17–28 | DOI | Zbl
[14] Ignatiev M. Yu., “On Weyl-type solutions of differential systems with a singularity. The case of discontinuous potential”, Mathematical Notes, 108:6 (2020), 814–826 | DOI | Zbl