Constructing the dependence between the~Young’s modulus value and~the~Hounsfield units of spongy tissue of~human femoral heads
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 2, pp. 182-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

Patient-specific biomechanical modeling requires not only the geometric model of the studied object of a particular patient, but also the mechanical properties of its tissues. Quantitative computed tomography provides the initial data for geometric modeling, as well as data on X-ray density (Hounsfield units) of the object. It is known that Hounsfield units correlate with mineral density of the scanned objects, as well as with their strength properties. The aim of this study was to determine the relationship between Hounsfield units and Young's modulus values of human femoral heads spongy tissue. This study was conducted on samples of femur bones spongy tissue. The tissue was obtained from patients who underwent total hip replacement for coxarthrosis. Samples were scanned on a Toshiba Aquilion 64 computed tomograph and then subjected to uniaxial compression on an Instron 5944 universal testing machine. As a result of the study, the average Hounsfield units were obtained for each sample, as well as the Young's modules values. Regression dependencies were calculated linking the Hounsfield units and the Young's modulus values of samples of femoral heads spongy tissue in different types of diseases. The obtained dependences allow one to determine Young's modulus value of femoral heads spongy bone noninvasively for a particular patient, depending on his disease, and using it in the process of preoperative planning. Also, the obtained dependencies can be used in biomechanical modeling of diseases and injuries of vertebral-pelvic complex of a particular patient treatment and can be implemented in medical decision support system in surgery of vertebral-pelvic complex.
@article{ISU_2021_21_2_a4,
     author = {L. V. Bessonov and A. A. Golyadkina and P. O. Dmitriev and A. V. Dol' and V. S. Zolotov and D. V. Ivanov and I. V. Kirillova and L. Yu. Kossovich and Yu. I. Titova and V. Yu. Ulyanov and A. V. Kharlamov},
     title = {Constructing the dependence between {the~Young{\textquoteright}s} modulus value {and~the~Hounsfield} units of spongy tissue of~human femoral heads},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {182--193},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a4/}
}
TY  - JOUR
AU  - L. V. Bessonov
AU  - A. A. Golyadkina
AU  - P. O. Dmitriev
AU  - A. V. Dol'
AU  - V. S. Zolotov
AU  - D. V. Ivanov
AU  - I. V. Kirillova
AU  - L. Yu. Kossovich
AU  - Yu. I. Titova
AU  - V. Yu. Ulyanov
AU  - A. V. Kharlamov
TI  - Constructing the dependence between the~Young’s modulus value and~the~Hounsfield units of spongy tissue of~human femoral heads
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2021
SP  - 182
EP  - 193
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a4/
LA  - en
ID  - ISU_2021_21_2_a4
ER  - 
%0 Journal Article
%A L. V. Bessonov
%A A. A. Golyadkina
%A P. O. Dmitriev
%A A. V. Dol'
%A V. S. Zolotov
%A D. V. Ivanov
%A I. V. Kirillova
%A L. Yu. Kossovich
%A Yu. I. Titova
%A V. Yu. Ulyanov
%A A. V. Kharlamov
%T Constructing the dependence between the~Young’s modulus value and~the~Hounsfield units of spongy tissue of~human femoral heads
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2021
%P 182-193
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a4/
%G en
%F ISU_2021_21_2_a4
L. V. Bessonov; A. A. Golyadkina; P. O. Dmitriev; A. V. Dol'; V. S. Zolotov; D. V. Ivanov; I. V. Kirillova; L. Yu. Kossovich; Yu. I. Titova; V. Yu. Ulyanov; A. V. Kharlamov. Constructing the dependence between the~Young’s modulus value and~the~Hounsfield units of spongy tissue of~human femoral heads. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 2, pp. 182-193. http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a4/

[1] Patel S. P., Lee J. J., Hecht G. G., Holcombe S. A., Wang S. C., Goulet J. A., “Normative vertebral Hounsfield unit values and correlation with bone mineral density”, Journal of Clinical Experimental Orthopaedics, 2:14 (2016), 1–7 | DOI

[2] Kim K. J., Kim D. H., Lee J. I., Choi B. K., Han I. H., Nam K. H., “Hounsfieldunits on lumbar computed tomography for predicting regional bone mineral density”, Open Medicine, 14 (2019), 545–551 | DOI

[3] Khan S. N., Warkhedkar R. M., Shyam A. K., “Analysis of Hounsfield unit of human bones for strength evaluation”, Procedia Materials Science, 6 (2014), 512–519 | DOI

[4] Giambini H., Dragomir-Daescu D., Huddleston P. M., Camp J. J., An K. N., Nassr A., “The effect of quantitative computed tomography acquisition protocols on bone mineral density estimation”, Journal of Biomechanical Engineering, 137:11 (2015), 114502 | DOI

[5] Cyganik L., Binkowski M., Kokot G., Rusin T., Popik P., Bolechala F., Nowak R. Wrobel Z., John A., “Prediction of Young's modulus of trabeculae in microscale using macro-scale's relationships between bone density and mechanical properties”, Journal of the Mechanical Behavior of Biomedical Materials, 36 (2014), 120–134 | DOI

[6] Michalski A. S., Edwards W. B., Boyd S. K., “The influence of reconstruction kernel on bone mineral and strength estimates using quantitative computed tomography and finite element analysis”, Journal of Clinical Densitometry, 22:2 (2019), 219–228 | DOI

[7] Andersen H. K., Jensen K., Berstad A. E., Aalokken T. M., Kristiansen J., von Gohren Edwin B, Hagen G., Martinsen A. C., “Choosing the best reconstruction technique in abdominal computed tomography: A systematic approach”, Journal of Computer Assisted Tomography, 38:6 (2014), 853–858 | DOI | MR

[8] Birnbaum B. A., Hindman N., Lee J., Babb J. S., “Multi-detector row CT attenuation measurements: Assessment of intra- and interscanner variability with an anthropomorphic body CT phantom”, Radiology, 242:1 (2007), 109–119 | DOI

[9] Ivanov D. V., Kirillova I. V., Kossovich L. Yu., Bessonov L. V., Petraikin A. V., Dol A. V., Ahmad E. S., Morozov S. P., Vladzymyrskyy A. V., Sergunova K. A., Kharlamov A. V., “Influence of convolution kernel and beam-hardening effection the assessment of trabecular bone mineral density using quantitative computed tomography”, Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 20:2 (2020), 205–219 | DOI | MR

[10] Currey J. D., “Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content”, Journal of Biomechanics, 37:4 (2004), 549–556 | DOI

[11] Chen W.-P., Hsu J.-T., Chang C.-H., “Determination of young's modulus of cortical bone directly from computed tomography: A rabbit model”, Journal of the Chinese Institute of Engineers, 26:6 (2003), 737–745 | DOI

[12] Giambini H., Dragomir-Daescu D., Nassr A., Yaszemski M. J., Zhao C., “Quantitative computed tomography protocols affect material mapping and quantitative computed tomography-based finite-element analysis predicted stiffness”, Journal of Biomechanical Engineering, 138:9 (2016), 091003, 7 pp. | DOI

[13] Helgason B., Perilli E., Schileo E., Taddei F., Brynjolfsson S., Viceconti M., “Mathematical relationships between bone density and mechanical properties: A literature review”, Clinical Biomechanics, 23:2 (2008), 135–146 | DOI

[14] Witt R. M., Cameron J. R., Improved Bone Standard Containing Dipotassium Hydrogen Phosphate Solution for The Intercomparison of Different Transmission Bone Scanning Systems, Preprint COO-1422-78, University of Wisconsin–Madison. Department of Radiology, Madison, Wisconsin, 1971, 6 pp. | DOI | Zbl

[15] Omelchenko T. M., Buryanov O. A., Lyabakh A. P., Mazevich V. B., Shidlovsky M. S., Musienko O. S., “Correlation of elastic modulus and x-ray bone density in the area of the ankle joint”, Orthopedics, Traumatology and Prosthetics, 2018, no. 3, 80–84 (in Ukraine) | DOI

[16] Dmitriev P. O., Golyadkina A. A., Bessonov L. V., Kirillova I. V., Kossovich L. Yu., Falkovich A. S., “The dependence of Young's modulus of trabecular bony tissue on its density according to computed tomography”, Progress in Biomedical Optics and Imaging, Proceedings of SPIE, 11229, 2019, 112291L | DOI

[17] Petraikin A. V., Ivanov D. V., Akhmad E. S., Sergunova K. A., Nizovtsova L. A., Petryaykin F. A., Ruzov S. A., Kirilova I. V., Kossovich L. Yu., Bessonov L. V., Dol A. V., Vladzymyrskyy A. V., Harlamov A. V., “Phantom modeling for selection of optimum reconstruction filters in the quantitative computer tomography”, Medical Physics, 86:2 (2020), 34–44 (in Russian)

[18] Glanc S., Medical and Biological Statistics, Praktika, M., 1998, 459 pp. (in Russian)

[19] Kobzar' A. I., Applied Mathematical Statistics: For Engineers and Scientists, Fizmatlit, M., 2006, 816 pp. (in Russian)

[20] Free J., Eggermont F., Derikx L., van Leeuwen R., van der Linden Y., Jansen W., Raaijmakers E., Tanck E., Kaatee R., “The effect of different CT scanners, scan parameters and scanning setup on Hounsfield units and calibrated bone density: A phantom study”, Biomedical Physics Engineering Express, 4:5 (2018), 12 | DOI