@article{ISU_2021_21_2_a3,
author = {V. B. Tlyachev and A. D. Ushkho and D. S. Ushkho},
title = {On periodic solutions of {Rayleigh} equation},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {173--181},
year = {2021},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a3/}
}
TY - JOUR AU - V. B. Tlyachev AU - A. D. Ushkho AU - D. S. Ushkho TI - On periodic solutions of Rayleigh equation JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 173 EP - 181 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a3/ LA - ru ID - ISU_2021_21_2_a3 ER -
V. B. Tlyachev; A. D. Ushkho; D. S. Ushkho. On periodic solutions of Rayleigh equation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 2, pp. 173-181. http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a3/
[1] Strutt J. (Rayleigh), The Theory of Sound, In 2 vols., v. I, Macmillan and C$^\circ$, London, 1894, 503 pp. | MR
[2] Kuznetsov A. P., Seliverstova E. S., Trubetskov D. I., Tyuryukina L. V., “Phenomenon of the van der Pol equation”, Izvestiya VUZ. Applied Nonlinear Dynamics, 22:4 (2014), 3–42 (in Russian) | DOI
[3] Andronov A. A., Witt A. A., Haikin S. E., Theory of Vibrations, Fizmatgiz, M., 1959, 916 pp. (in Russian)
[4] Anishchenko V. S., Vadivasova T. E., Lectures on Nonlinear Dynamics, NITs “Reguliarnaia i khaoticheskaia dinamika”, M.–Izhevsk, 2011, 516 pp. (in Russian)
[5] Gains R. E., Mawhin J. L., Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Mathematics, 568, Berlin–Heidelberg–Springer, 1977, 241 pp. | DOI | MR
[6] Plesset M. S., Prosperetti A., “Bubble dynamics and cavitation”, Annual Review of Fluid Mechanics, 9 (1977), 145–185 | DOI | MR | Zbl
[7] Reissig R., Sansone G., Conti R., Qualitative Theorie Nichtlinearer Differentialgleichungen, Edizioni Cremonese, Rome, 1963, 382 pp. | MR
[8] Wang Z., “On the existence of periodic solutions of Rayleigh equations”, Zeitschrift fur angewandte Mathematik und Physik, 56:4 (2005), 592–608 | DOI | MR | Zbl
[9] Wang Y., Dai X.-Z., “Existence and stability of periodic solutions of a Rayleigh type equation”, Bulletin of the Australian Mathematical Society, 79:3 (2009), 377–390 | DOI | MR | Zbl
[10] Guo Y., Wang Y., Zhou D., “A new result on the existence of periodic solutions for Rayleigh equation with a singularity”, Advances in Difference Equations, 2017, 394 | DOI | MR
[11] Alzabut J., Tunc C., “Existence of Periodic solutions for a type of Rayleigh equation with state-dependent delay”, Electronic Journal of Differential Equations, 77 (2012), 1–8 | MR
[12] Li Y., Huang L., “New results of periodic solution for forced Rayleigh-type equation”, Journal of Computational and Applied Mathematics, 221:1 (2008), 98–105 | DOI | MR | Zbl
[13] Kumakshev S. A., “Investigation of regular and relaxation oscillations in the Rayleigh and van der Pol oscillators”, Bulletin of the Lobachevsky University of Nizhny Novgorod, 2011, no. 4 (2), 203–205 (in Russian)
[14] Stoker J., Nonlinear Vibrations in Mechanical and Electrical Systems, Interscience Publishers, New York, 1950, 273 pp. | MR | Zbl
[15] Coddington E. A., Levinson N., Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955, 429 pp. | MR | Zbl
[16] Zhitelzeif E. D., “The limit cycles of the Rayleigh equation”, Differential Equations, 8:7 (1972), 1309–1311 (in Russian) | MR
[17] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Qualitative Theory of Second-Order Dynamic Systems, John Wiley, Jerusalem–New York, 1973, 524 pp. | MR | MR | Zbl
[18] Otrokov N. F., Analytical Integrals and Limit Cycles, Volgo-Viatskoe knizhnoe izdatel'stvo, Gorky, 1972, 216 pp.