On periodic solutions of Rayleigh equation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 2, pp. 173-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

New sufficient conditions for the existence and uniqueness of a periodic solution of a system of differential equations equivalent to the Rayleigh equation are obtained. In contrast to the known results, the existence proof of at least one limit cycle of the system is based on applying curves of the topographic Poincare system. The uniqueness of the limit cycle surrounding a complex unstable focus is proved by the Otrokov method.
@article{ISU_2021_21_2_a3,
     author = {V. B. Tlyachev and A. D. Ushkho and D. S. Ushkho},
     title = {On periodic solutions of {Rayleigh} equation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {173--181},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a3/}
}
TY  - JOUR
AU  - V. B. Tlyachev
AU  - A. D. Ushkho
AU  - D. S. Ushkho
TI  - On periodic solutions of Rayleigh equation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2021
SP  - 173
EP  - 181
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a3/
LA  - ru
ID  - ISU_2021_21_2_a3
ER  - 
%0 Journal Article
%A V. B. Tlyachev
%A A. D. Ushkho
%A D. S. Ushkho
%T On periodic solutions of Rayleigh equation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2021
%P 173-181
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a3/
%G ru
%F ISU_2021_21_2_a3
V. B. Tlyachev; A. D. Ushkho; D. S. Ushkho. On periodic solutions of Rayleigh equation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 2, pp. 173-181. http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a3/

[1] Strutt J. (Rayleigh), The Theory of Sound, In 2 vols., v. I, Macmillan and C$^\circ$, London, 1894, 503 pp. | MR

[2] Kuznetsov A. P., Seliverstova E. S., Trubetskov D. I., Tyuryukina L. V., “Phenomenon of the van der Pol equation”, Izvestiya VUZ. Applied Nonlinear Dynamics, 22:4 (2014), 3–42 (in Russian) | DOI

[3] Andronov A. A., Witt A. A., Haikin S. E., Theory of Vibrations, Fizmatgiz, M., 1959, 916 pp. (in Russian)

[4] Anishchenko V. S., Vadivasova T. E., Lectures on Nonlinear Dynamics, NITs “Reguliarnaia i khaoticheskaia dinamika”, M.–Izhevsk, 2011, 516 pp. (in Russian)

[5] Gains R. E., Mawhin J. L., Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Mathematics, 568, Berlin–Heidelberg–Springer, 1977, 241 pp. | DOI | MR

[6] Plesset M. S., Prosperetti A., “Bubble dynamics and cavitation”, Annual Review of Fluid Mechanics, 9 (1977), 145–185 | DOI | MR | Zbl

[7] Reissig R., Sansone G., Conti R., Qualitative Theorie Nichtlinearer Differentialgleichungen, Edizioni Cremonese, Rome, 1963, 382 pp. | MR

[8] Wang Z., “On the existence of periodic solutions of Rayleigh equations”, Zeitschrift fur angewandte Mathematik und Physik, 56:4 (2005), 592–608 | DOI | MR | Zbl

[9] Wang Y., Dai X.-Z., “Existence and stability of periodic solutions of a Rayleigh type equation”, Bulletin of the Australian Mathematical Society, 79:3 (2009), 377–390 | DOI | MR | Zbl

[10] Guo Y., Wang Y., Zhou D., “A new result on the existence of periodic solutions for Rayleigh equation with a singularity”, Advances in Difference Equations, 2017, 394 | DOI | MR

[11] Alzabut J., Tunc C., “Existence of Periodic solutions for a type of Rayleigh equation with state-dependent delay”, Electronic Journal of Differential Equations, 77 (2012), 1–8 | MR

[12] Li Y., Huang L., “New results of periodic solution for forced Rayleigh-type equation”, Journal of Computational and Applied Mathematics, 221:1 (2008), 98–105 | DOI | MR | Zbl

[13] Kumakshev S. A., “Investigation of regular and relaxation oscillations in the Rayleigh and van der Pol oscillators”, Bulletin of the Lobachevsky University of Nizhny Novgorod, 2011, no. 4 (2), 203–205 (in Russian)

[14] Stoker J., Nonlinear Vibrations in Mechanical and Electrical Systems, Interscience Publishers, New York, 1950, 273 pp. | MR | Zbl

[15] Coddington E. A., Levinson N., Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955, 429 pp. | MR | Zbl

[16] Zhitelzeif E. D., “The limit cycles of the Rayleigh equation”, Differential Equations, 8:7 (1972), 1309–1311 (in Russian) | MR

[17] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Qualitative Theory of Second-Order Dynamic Systems, John Wiley, Jerusalem–New York, 1973, 524 pp. | MR | MR | Zbl

[18] Otrokov N. F., Analytical Integrals and Limit Cycles, Volgo-Viatskoe knizhnoe izdatel'stvo, Gorky, 1972, 216 pp.