About the convergence rate Hermite -- Pad\'e approximants of~exponential functions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 2, pp. 162-172

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies uniform convergence rate of Hermite – Padé approximants (simultaneous Padé approximants) $\{\pi^j_{n,\overrightarrow{m}}(z)\}_{j=1}^k$ for a system of exponential functions $\{e^{\lambda_jz}\}_{j=1}^k$, where $\{\lambda_j\}_{j=1}^k$ are different nonzero complex numbers. In the general case a research of the asymptotic properties of Hermite – Padé approximants is a rather complicated problem. This is due to the fact that in their study mainly asymptotic methods are used, in particular, the saddle-point method. An important phase in the application of this method is to find a special saddle contour (the Cauchy integral theorem allows to choose an integration contour rather arbitrarily), according to which integration should be carried out. Moreover, as a rule, one has to repy only on intuition. In this paper, we propose a new method to studying the asymptotic properties of Hermite – Padé approximants, that is based on the Taylor theorem and heuristic considerations underlying the Laplace and saddle-point methods, as well as on the multidimensional analogue of the Van Rossum identity that we obtained. The proved theorems complement and generalize the known results by other authors.
@article{ISU_2021_21_2_a2,
     author = {A. P. Starovoitov and E. P. Kechko},
     title = {About the convergence rate {Hermite} -- {Pad\'e} approximants of~exponential functions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {162--172},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a2/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - E. P. Kechko
TI  - About the convergence rate Hermite -- Pad\'e approximants of~exponential functions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2021
SP  - 162
EP  - 172
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a2/
LA  - ru
ID  - ISU_2021_21_2_a2
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A E. P. Kechko
%T About the convergence rate Hermite -- Pad\'e approximants of~exponential functions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2021
%P 162-172
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a2/
%G ru
%F ISU_2021_21_2_a2
A. P. Starovoitov; E. P. Kechko. About the convergence rate Hermite -- Pad\'e approximants of~exponential functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 2, pp. 162-172. http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a2/