About the convergence rate Hermite -- Pad\'e approximants of~exponential functions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 2, pp. 162-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies uniform convergence rate of Hermite – Padé approximants (simultaneous Padé approximants) $\{\pi^j_{n,\overrightarrow{m}}(z)\}_{j=1}^k$ for a system of exponential functions $\{e^{\lambda_jz}\}_{j=1}^k$, where $\{\lambda_j\}_{j=1}^k$ are different nonzero complex numbers. In the general case a research of the asymptotic properties of Hermite – Padé approximants is a rather complicated problem. This is due to the fact that in their study mainly asymptotic methods are used, in particular, the saddle-point method. An important phase in the application of this method is to find a special saddle contour (the Cauchy integral theorem allows to choose an integration contour rather arbitrarily), according to which integration should be carried out. Moreover, as a rule, one has to repy only on intuition. In this paper, we propose a new method to studying the asymptotic properties of Hermite – Padé approximants, that is based on the Taylor theorem and heuristic considerations underlying the Laplace and saddle-point methods, as well as on the multidimensional analogue of the Van Rossum identity that we obtained. The proved theorems complement and generalize the known results by other authors.
@article{ISU_2021_21_2_a2,
     author = {A. P. Starovoitov and E. P. Kechko},
     title = {About the convergence rate {Hermite} -- {Pad\'e} approximants of~exponential functions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {162--172},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a2/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - E. P. Kechko
TI  - About the convergence rate Hermite -- Pad\'e approximants of~exponential functions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2021
SP  - 162
EP  - 172
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a2/
LA  - ru
ID  - ISU_2021_21_2_a2
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A E. P. Kechko
%T About the convergence rate Hermite -- Pad\'e approximants of~exponential functions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2021
%P 162-172
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a2/
%G ru
%F ISU_2021_21_2_a2
A. P. Starovoitov; E. P. Kechko. About the convergence rate Hermite -- Pad\'e approximants of~exponential functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 2, pp. 162-172. http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a2/

[1] Stahl H., “Asymptotics for quadratic Hermite – Padé polynomials associated with the exponential function”, Electronic Transactions on Numerical Analysis, 14 (2002), 195–222 | MR | Zbl

[2] Hermite S., Sur la fonction exponentielle, Gauthier-Villars, Paris, 1874, 33 pp.

[3] Nikishin E. M., Sorokin V. N., Rational Approximations and Orthogonality, AMS, Providence, 1991, 221 pp. | MR | MR | Zbl

[4] Perron O., Die Lehre von den Kettenbrüchen, Teubner, Leipzig–Berlin, 1929, 524 pp. | MR | Zbl

[5] Aptekarev A. I., “On the convergence of rational-approximations to the set of exponents”, Vestnik Moskovskogo Universiteta. Seriya 1: Matematika. Mekhanika, 1981, no. 1, 68–74 (in Russian) | MR | Zbl

[6] Braess D., “On the conjecture of Meinardus on rational approximation of $e^x$, II”, Journal of Approximation Theory, 40:4 (1984), 375–379 | DOI | MR | Zbl

[7] Kuijlaars A. B. J., Stahl H., Van Assche W., Wielonsky F., “Type II Hermite – Padé approximation to the exponential function”, Journal of Computational and Applied Mathematics, 207:2 (2007), 227–244 | DOI | MR | Zbl

[8] Kuijlaars A. B. J., Stahl H., Van Assche W., Wielonsky F., “Asymptotique des approximants de Hermite – Padé quadratiques de la fonction exponentielle et problèmes de Riemann – Hiebert”, Comptes Rendus Mathematique, 336:11 (2003), 893–896 | DOI | MR | Zbl

[9] Kuijlaars A. B. J., Van Assche W., Wielonsky F., “Quadratic Hermite – Padé approximation to the exponential function: A Riemann – Hiebert approach”, Constructive Approximation, 21:3 (2005), 351–412 | DOI | MR | Zbl

[10] Stahl H., “Asymptotic distributions of zeros of quadratic Hermite – Padé polynomials associated with the exponential function”, Constructive Approximation, 23:2 (2006), 121–164 | DOI | MR | Zbl

[11] Starovoitov A. P., “Ermitovskaya approksimatsiya dvukh eksponent”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya : Matematika. Mekhanika. Informatika, 13:1-2 (2013), 87–91 | DOI

[12] Starovoitov A. P., “The asymptotic form of the Hermite – Padé approximations for a system of Mittag – Leffler functions”, Russian Mathematics, 58:9 (2014), 49–56 | DOI | Zbl

[13] Starovoitov A. P. Hermite – Padé approximants of the Mittag – Leffler functions, Proceedings of the Steklov Institute of Mathematics, 301 (2018), 228–244 | DOI | DOI | MR | Zbl

[14] Klein F., Elementary Mathematics from a Higher Standpoint, v. 1, Arithmetic, Algebra, Analysis, Springer, Berlin, 2016, 312 pp.

[15] Mahler K., “Zur Approximation der Exponentialfunktion und des Logarithmus, I”, Journal für die Reine und Angewandte Mathematik, 1932:166 (2009), 118–136 | DOI | MR

[16] Mahler K., “Zur Approximation der Exponentialfunktion und des Logarithmus, II”, Journal für die Reine und Angewandte Mathematik, 1932:166 (2009), 137–150 | DOI | MR

[17] Mahler K., “Applications of some formulae by Hermite to the approximation of exponentials and logarithms”, Mathematische Annalen, 168:1 (1967), 200–227 | DOI | MR | Zbl

[18] Mahler K., “Perfect systems”, Compositio Mathematica, 19:2 (1968), 95–166 | MR | Zbl

[19] Chudnovsky G. V., “Hermite – Padé approximations to exponential functions and elementary estimates of the measure of irrationality of $\pi$”, The Riemann Problem, Complete Integrability and Arithmetic Applications, Lecture Notes in Mathematics, 925, eds. D. V. Chudnovsky, G. V. Chudnovsky, Springer-Verlag, New York–Berlin, 1982, 299–322 | DOI | MR

[20] Van Rossum H., “Systems of orthogonal and quasi orthogonal polynomials connected with the Padé table. II”, Indagationes Mathematicae (Proceedings), 58 (1955), 526–534 | DOI | MR | Zbl

[21] Wielonsky F., “Asymptotics of diagonal Hermite – Padé approximants to $e^z$”, Journal of Approximation Theory, 90:2 (1997), 283–298 | DOI | MR | Zbl

[22] Astafieva A. V., Starovoitov A. P., “Hermite – Padé approximation of exponential functions”, Sbornik: Mathematics, 207:6 (2016), 769–791 | DOI | DOI | MR