Quasi-polynomials of Capelli.~III
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 2, pp. 142-150

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper polynomials of Capelli type (double and quasi-polynomials of Capelli) belonging to a free associative algebra $F\{X\cup Y\}$ considering over an arbitrary field $F$ and generated by two disjoint countable sets $X, Y$ are investigated. It is shown that double Capelli's polynomials $C_{4k,\{1\}}$, $C_{4k,\{2\}}$ are consequences of the standard polynomial $S^-_{2k}$. Moreover, it is proved that these polynomials equal to zero both for square and for rectangular matrices of corresponding sizes. In this paper it is also shown that all Capelli's quasi-polynomials of the $(4k+1)$ degree are minimal identities of odd component of $Z_2$-graded matrix algebra $M^{(m, k)}(F)$ for any $F$ and $m\ne k$.
@article{ISU_2021_21_2_a0,
     author = {S. Yu. Antonov and A. V. Antonova},
     title = {Quasi-polynomials of {Capelli.~III}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {142--150},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a0/}
}
TY  - JOUR
AU  - S. Yu. Antonov
AU  - A. V. Antonova
TI  - Quasi-polynomials of Capelli.~III
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2021
SP  - 142
EP  - 150
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a0/
LA  - ru
ID  - ISU_2021_21_2_a0
ER  - 
%0 Journal Article
%A S. Yu. Antonov
%A A. V. Antonova
%T Quasi-polynomials of Capelli.~III
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2021
%P 142-150
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a0/
%G ru
%F ISU_2021_21_2_a0
S. Yu. Antonov; A. V. Antonova. Quasi-polynomials of Capelli.~III. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 2, pp. 142-150. http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a0/