Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_1_a8, author = {I. L. Lapatin and A. A. Nazarov}, title = {Output process of the $\mathrm{M|GI|1}$ is an asymptotical renewal process}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {100--110}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a8/} }
TY - JOUR AU - I. L. Lapatin AU - A. A. Nazarov TI - Output process of the $\mathrm{M|GI|1}$ is an asymptotical renewal process JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 100 EP - 110 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a8/ LA - ru ID - ISU_2021_21_1_a8 ER -
%0 Journal Article %A I. L. Lapatin %A A. A. Nazarov %T Output process of the $\mathrm{M|GI|1}$ is an asymptotical renewal process %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2021 %P 100-110 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a8/ %G ru %F ISU_2021_21_1_a8
I. L. Lapatin; A. A. Nazarov. Output process of the $\mathrm{M|GI|1}$ is an asymptotical renewal process. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 1, pp. 100-110. http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a8/
[1] Gnedenko B. V., Kovalenko I. N., Introduction to Queuing Theory, LKI, M., 2007, 400 pp. (in Russian)
[2] Wilkinson R. I., “Theories for toll traffic engineering in the USA”, The Bell System Technical Journal, 35:2 (1956), 421–507
[3] Artalejo J. R., Gómez-Corral A., Retrial Queueing Systems: A Computational Approach, Springer, Berlin, 2008, 318 pp.
[4] Falin G. I., Templeton J. G. C., Retrial Queues, Chapman and Hall, London, 1997, 320 pp.
[5] Artalejo J. R., Phung-Duc T., “Single server retrial queues with two way communication”, Applied Mathematical Modelling, 37:4 (2013), 1811–1822 | DOI
[6] Nazarov A., Paul S., Gudkova I., “Asymptotic analysis of Markovian retrial queue with two-way communication under low rate of retrials condition”, Proceedings 31st European Conference on Modelling and Simulation, ECMS, Budapest, Hungary, 2017, 687–693 | DOI
[7] Burke P. J., “The output of queueing systems”, Operations Research, 4:6 (1956), 629–753 | DOI
[8] Reich E., “Waiting times when queues are in tandem”, The Annals of Mathematical Statistics, 28:3 (1957), 768–773
[9] Finch P. D., “The output process of the queueing system M|G|1”, Journal of the Royal Statistical Society : Series B (Methodological), 21:2 (1959), 375–380 | DOI
[10] Projdakova E. V., Fedotkin M. A. Control of output flows in the system with cyclic servicing and readjustments, Automation and Remote Control, 69:6 (2008), 993–1002 | DOI
[11] Green D., Departure Processes from MAP/PH/1 Queues, Thesis (Ph. D.), University of Adelaide, Department of Applied Mathematics, 1999, 12 pp.
[12] Lapatin I. L., Investigation of output process queuing models with an unlimited number of devices, Diss. Cand. Sci. (Phys. and Math.), Tomsk State University, Tomsk, 2012, 138 pp. (in Russian)
[13] Lapatin I. L., Nazarov A. A., “Investigation of output process RQ system M/M/1 in the asymptotic condition of a large delay in orbit”, Distributed computer and communication networks: control, computation, communications, DCCN-2018, Procedings of the XXI International Scientific Conference, Izdatel'stvo RUDN, M., 2018, 246–252 (in Russian)
[14] Lopuchova S. V., Nazarov A. A., “Research of general independent process”, Tomsk State University Journal of Control and Computer Science, 2007, no. 1, 67–76 (in Russian)