Multi-criteria approach to pair-multiple linear regression models constructing
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 1, pp. 88-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

A pair-multiple linear regression model which is a synthesis of Deming regression and multiple linear regression model is considered. It is shown that with a change in the type of minimized distance, the pair-multiple regression model transforms smoothly from the pair model into the multiple linear regression model. In this case, pair-multiple regression models retain the ability to interpret the coefficients and predict the values of the explained variable. An aggregated quality criterion of regression models based on four well-known indicators: the coefficient of determination, Darbin – Watson, the consistency of behaviour and the average relative error of approximation is proposed. Using this criterion, the problem of multi-criteria construction of a pair-multiple linear regression model is formalized as a nonlinear programming problem. An algorithm for its approximate solution is developed. The results of this work can be used to improve the overall qualitative characteristics of multiple linear regression models.
@article{ISU_2021_21_1_a7,
     author = {M. P. Bazilevskiy},
     title = {Multi-criteria approach to pair-multiple linear regression models constructing},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {88--99},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a7/}
}
TY  - JOUR
AU  - M. P. Bazilevskiy
TI  - Multi-criteria approach to pair-multiple linear regression models constructing
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2021
SP  - 88
EP  - 99
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a7/
LA  - ru
ID  - ISU_2021_21_1_a7
ER  - 
%0 Journal Article
%A M. P. Bazilevskiy
%T Multi-criteria approach to pair-multiple linear regression models constructing
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2021
%P 88-99
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a7/
%G ru
%F ISU_2021_21_1_a7
M. P. Bazilevskiy. Multi-criteria approach to pair-multiple linear regression models constructing. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 1, pp. 88-99. http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a7/

[1] Montgomery D. C., Peck E. A., Vining G. G., Introduction to Linear Regression Analysis, Wiley, 2012, 672 pp.

[2] Kleinbaum D. G., Kupper L. L., Nizam A., Rosenberg E. S., Applied Regression Analysis and Other Multivariable Methods, Cengage Learning, 2013, 1072 pp.

[3] Harrell Jr., Frank E., Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, Springer Series in Statistics, 2015, 582 pp.

[4] Kuhn M., Johnson K., Applied Predictive Modeling, Springer, 2018, 600 pp.

[5] Gillard J., “An overview of linear structural models in errors in variables regression”, REVSTAT - Statistical Journal, 8:1 (2010), 57–80

[6] Xu K., Ma Y., Wang L., “Instrument assisted regression for errors in variables models with binary response”, Scandinavian Journal of Statistics, 42:1 (2015), 104–117 | DOI

[7] Rudelson M., Zhou S., “Errors-in-variables models with dependent measurements”, Electronic Journal of Statistics, 11:1 (2017), 1699–1797 | DOI

[8] Gospodinov N., Komunjer I., Ng S., “Simulated minimum distance estimation of dynamic models with errors-in-variables”, Journal of Econometrics, 200:2 (2017), 181–193 | DOI

[9] Soderstrom T., Soverini U., “Errors-in-variables identification using maximum likelihood estimation in the frequency domain”, Automatica, 79 (2017), 131–143 | DOI

[10] Bianco A. M., Spano P. M., “Robust estimation in partially linear errors-in-variables models”, Computational Statistics Data Analysis, 106 (2017), 46–64 | DOI

[11] Deming W. E., Statistical Adjustment of Data, Wiley, 1943, 273 pp.

[12] Wu C., Yu J. Z., “Evaluation of linear regression techniques for atmospheric applications: The importance of appropriate weighting”, Atmospheric Measurement Techniques, 11 (2018), 1233–1250 | DOI

[13] Henderson C. M., Shulman N. J., MacLean B., MacCoss M. J., Hoofnagle A. N., “Skyline performs as well as vendor software in the quantitative analysis of serum 25-hydroxy vitamin D and vitamin D binding globulin”, Clinical Chemistry, 64:2 (2018), 408–410 | DOI

[14] Reverter-Branchat G., Bosch J., Vall J., Farre M., Papaseit E., Pichini S., Segura J., “Determination of recent growth hormone abuse using a single dried blood spot”, Clinical Chemistry, 62:10 (2016), 1353–1360 | DOI

[15] Bazilevskiy M. P., “Synthesis of the multiple linear regression and deming regression model”, Information Technologies in Modeling and Management: Approaches, Methods, Solutions, Materials of the II All-Russian Scientific Conference with International Participation, in 2 pt., v. 1, Tolyatti, 2019, 64–69 (in Russian)

[16] Bazilevskiy M. P., “Synthesis of multiple linear regression and Deming regression model's: investigation the dependences of parameter estimates and adequacy criteria on the ratio of variance error variables”, Information technology and mathematical modeling in the management of complex systems: electronic scientific journal, 2019, no. 2, 18–25 (in Russian) (accessed 19 June 2019)

[17] Noskov S. I., Bazilevskiy M. P., Construction of Regression Models Using Linear Boolean Programming, IrGUPS, Irkutsk, 2018, 176 pp. (in Russian)