Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_1_a7, author = {M. P. Bazilevskiy}, title = {Multi-criteria approach to pair-multiple linear regression models constructing}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {88--99}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a7/} }
TY - JOUR AU - M. P. Bazilevskiy TI - Multi-criteria approach to pair-multiple linear regression models constructing JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 88 EP - 99 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a7/ LA - ru ID - ISU_2021_21_1_a7 ER -
%0 Journal Article %A M. P. Bazilevskiy %T Multi-criteria approach to pair-multiple linear regression models constructing %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2021 %P 88-99 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a7/ %G ru %F ISU_2021_21_1_a7
M. P. Bazilevskiy. Multi-criteria approach to pair-multiple linear regression models constructing. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 1, pp. 88-99. http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a7/
[1] Montgomery D. C., Peck E. A., Vining G. G., Introduction to Linear Regression Analysis, Wiley, 2012, 672 pp.
[2] Kleinbaum D. G., Kupper L. L., Nizam A., Rosenberg E. S., Applied Regression Analysis and Other Multivariable Methods, Cengage Learning, 2013, 1072 pp.
[3] Harrell Jr., Frank E., Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, Springer Series in Statistics, 2015, 582 pp.
[4] Kuhn M., Johnson K., Applied Predictive Modeling, Springer, 2018, 600 pp.
[5] Gillard J., “An overview of linear structural models in errors in variables regression”, REVSTAT - Statistical Journal, 8:1 (2010), 57–80
[6] Xu K., Ma Y., Wang L., “Instrument assisted regression for errors in variables models with binary response”, Scandinavian Journal of Statistics, 42:1 (2015), 104–117 | DOI
[7] Rudelson M., Zhou S., “Errors-in-variables models with dependent measurements”, Electronic Journal of Statistics, 11:1 (2017), 1699–1797 | DOI
[8] Gospodinov N., Komunjer I., Ng S., “Simulated minimum distance estimation of dynamic models with errors-in-variables”, Journal of Econometrics, 200:2 (2017), 181–193 | DOI
[9] Soderstrom T., Soverini U., “Errors-in-variables identification using maximum likelihood estimation in the frequency domain”, Automatica, 79 (2017), 131–143 | DOI
[10] Bianco A. M., Spano P. M., “Robust estimation in partially linear errors-in-variables models”, Computational Statistics Data Analysis, 106 (2017), 46–64 | DOI
[11] Deming W. E., Statistical Adjustment of Data, Wiley, 1943, 273 pp.
[12] Wu C., Yu J. Z., “Evaluation of linear regression techniques for atmospheric applications: The importance of appropriate weighting”, Atmospheric Measurement Techniques, 11 (2018), 1233–1250 | DOI
[13] Henderson C. M., Shulman N. J., MacLean B., MacCoss M. J., Hoofnagle A. N., “Skyline performs as well as vendor software in the quantitative analysis of serum 25-hydroxy vitamin D and vitamin D binding globulin”, Clinical Chemistry, 64:2 (2018), 408–410 | DOI
[14] Reverter-Branchat G., Bosch J., Vall J., Farre M., Papaseit E., Pichini S., Segura J., “Determination of recent growth hormone abuse using a single dried blood spot”, Clinical Chemistry, 62:10 (2016), 1353–1360 | DOI
[15] Bazilevskiy M. P., “Synthesis of the multiple linear regression and deming regression model”, Information Technologies in Modeling and Management: Approaches, Methods, Solutions, Materials of the II All-Russian Scientific Conference with International Participation, in 2 pt., v. 1, Tolyatti, 2019, 64–69 (in Russian)
[16] Bazilevskiy M. P., “Synthesis of multiple linear regression and Deming regression model's: investigation the dependences of parameter estimates and adequacy criteria on the ratio of variance error variables”, Information technology and mathematical modeling in the management of complex systems: electronic scientific journal, 2019, no. 2, 18–25 (in Russian) (accessed 19 June 2019)
[17] Noskov S. I., Bazilevskiy M. P., Construction of Regression Models Using Linear Boolean Programming, IrGUPS, Irkutsk, 2018, 176 pp. (in Russian)