Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_1_a6, author = {A. E. Choque-Rivero and F. Ornelas-Tellez}, title = {Bounded finite-time stabilization of the prey -- predator model via {Korobov's} controllability function}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {76--87}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a6/} }
TY - JOUR AU - A. E. Choque-Rivero AU - F. Ornelas-Tellez TI - Bounded finite-time stabilization of the prey -- predator model via Korobov's controllability function JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 76 EP - 87 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a6/ LA - en ID - ISU_2021_21_1_a6 ER -
%0 Journal Article %A A. E. Choque-Rivero %A F. Ornelas-Tellez %T Bounded finite-time stabilization of the prey -- predator model via Korobov's controllability function %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2021 %P 76-87 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a6/ %G en %F ISU_2021_21_1_a6
A. E. Choque-Rivero; F. Ornelas-Tellez. Bounded finite-time stabilization of the prey -- predator model via Korobov's controllability function. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 1, pp. 76-87. http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a6/
[1] Collings J. B., “The effects of the functional response on the bifurcation behavior of a mite predator – prey interaction model”, Journal of Mathematical Biology, 36:2 (1997), 149–168 | DOI
[2] Li Y., Xiao D., “Bifurcations of a predator – prey system of Holling and Leslie types”, Chaos, Solitons and Fractals, 34:2 (2007), 606–620 | DOI
[3] Jiang J., Song Y., “Stability and bifurcation analysis of a delayed Leslie – Gower predator – prey system with nonmonotonic functional response”, Abstract and Applied Analysis, 2013 (2013), 152459 | DOI
[4] Gakkhar S., Singh A., “Complex dynamics in a prey predator system with multiple delays”, Communications in Nonlinear Science and Numerical Simulation, 17:2 (2012), 914–929 | DOI
[5] Leslie P., Gower J., “The properties of a stochastic model for the predator – prey type of interaction between two species”, Biometrika, 47:3–4 (1960), 219–234 | DOI
[6] Pielou E. C., An Introduction to Mathematical Ecology, Wiley-Interscience, New York, 1969, 294 pp.
[7] Mathematics of the USSR-Sbornik, 37:4 (1980), 535–557 | DOI
[8] Korobov V. I., Controllability Function Method, Institut komp'iuternykh issledovaniy, M.–Izhevsk, 2007, 576 pp. (in Russian)
[9] Korobov V. I., Skoryk V. O., “Construction of restricted controls for a non-equilibrium point in global sense”, Vietnam Journal of Mathematics, 43:2 (2015), 459–469 | DOI
[10] Polyakov A., Efimov D., Perruquetti W., “Finite-time stabilization using implicit Lyapunov function technique”, IFAC Proceedings Volumes, 46:23 (2013), 140–145 | DOI
[11] Korobov V. I., Sklyar G. M., “Methods for constructing positional controls, and a feasible maximum principle”, Differential Equations, 26:11 (1990), 1422–1431
[12] Korobov V. I., Korotyaeva Y. V., “Feedback control design for systems with $x$-discontinuous rigt-hand side”, Journal of Optimization Theory and Applications, 149 (2011), 494–512 | DOI
[13] Singh A., “Stabilization of prey predator model via feedback control”, Applied Analysis in Biological and Physical Sciences, Springer Proceedings in Mathematics Statistics, 186, eds. J. Cushing, M. Saleem, H. Srivastava, M. Khan, M. Merajuddin, Springer, New Delhi, 2016, 177–186 | DOI
[14] Kamenkov G., “On stability of motion over a finite interval of time”, Akad. Nauk SSSR. Prikladnaya Matematika i Mekhanika, 17 (1953), 529–540 (in Russian)
[15] Weiss L., Infante E. F., “Finite time stability under perturbing forces and product spaces”, IEEE Transactions on Automatic Control, 12:1 (1967), 54–59 | DOI
[16] LaSalle J., Letfschetz S., Stability by Liapunov's Direct Method with Applications, Academic Press, New York–London, 1961, 134 pp.
[17] Dorato P., Weiss L., Infante E., “Comment on “Finite-time stability under perturbing forces and on product spaces””, IEEE Transactions on Automatic Control, 12:3 (1967), 340–340 | DOI
[18] Dorato P., “An Overview of Finite-Time Stability”, Current Trends in Nonlinear Systems and Control, Systems and Control: Foundations Applications, eds. L. Menini, L. Zaccarian, C. T. Abdallah, Birkhäuser, Boston, 2006, 185–194 | DOI
[19] Bath S. P., Berstein D. S., “Lyapunov analysis of finite-time differential equations”, Proceedings of 1995 American Control Conference — ACC'95 (Seattle, WA, USA, 1995), v. 3, 1831–1832 | DOI
[20] Poznyak A. S., Polyakov A. Y., Strygin V. V., “Analysis of finite-time convergence by the method of Lyapunov functions in systems with second-order sliding modes”, Journal of Applied Mathematics and Mechanics, 75:3 (2011), 289–303 | DOI
[21] arXiv: 1509.05127
[22] Choque Rivero A. E., Korobov V. I., Skoryk V. O., “The controllability function as the time of motion. II”, Journal of Mathematical Physics, Analysis, Geometry, 11:3 (2004), 341–354 (in Russian)
[23] Choque Rivero A. E., “The controllability function method for the synthesis problem of a nonlinear control system”, International Review of Automatic Control, 1:4 (2008), 441–445
[24] Yefimov N. A., Quadratic Forms and Matrices: An Introduction Approach, Academic Press, New York–London, 1964, 164 pp.