Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_1_a1, author = {M. M. Sorokina and S. P. Maksakov}, title = {On maximal subformations of $n$-multiple $\Omega$-foliated formations of~finite groups}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {15--25}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a1/} }
TY - JOUR AU - M. M. Sorokina AU - S. P. Maksakov TI - On maximal subformations of $n$-multiple $\Omega$-foliated formations of~finite groups JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 15 EP - 25 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a1/ LA - ru ID - ISU_2021_21_1_a1 ER -
%0 Journal Article %A M. M. Sorokina %A S. P. Maksakov %T On maximal subformations of $n$-multiple $\Omega$-foliated formations of~finite groups %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2021 %P 15-25 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a1/ %G ru %F ISU_2021_21_1_a1
M. M. Sorokina; S. P. Maksakov. On maximal subformations of $n$-multiple $\Omega$-foliated formations of~finite groups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 1, pp. 15-25. http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a1/
[1] Doerk K., Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992, 901 pp.
[2] Gaschütz W., “Zur theorie der endlichen auflösbaren Gruppen”, Mathematische Zeitschrift, 80:1 (1962), 300–305 (in Germany) | DOI
[3] Shemetkov L. A., “On product of formations”, Academy of Sciences BSSR Report, 28:2 (1984), 101–103 (in Russian)
[4] Skiba A. N., Shemetkov L. A., “Multiple $\frak{L}$-composition formations of finite groups”, Ukrainian Mathematical Journal, 52:6 (2000), 783–797 (in Russian)
[5] Vedernikov V. A., Sorokina M. M., “The $\Omega$-foliated formations and Fitting classes of finite groups”, Discrete Mathematics and Applications, 11:5 (2001), 507–527 | DOI
[6] Skiba A. N., “Characterization of finite solvable groups of a certain nilpotent length”, Issues of Algebra, 3 (1987), 21–31 (in Russian)
[7] Skachkova (Elovikova) Y. A., “Boolean lattices of multiple $\Omega$-foliated formations and Fitting classes”, Discrete Mathematics and Applications, 12:5 (2002), 477–482 | DOI
[8] Elovikova Y. A., “The algebraic lattices of $\Omega$-foliated formations”, The Bryansk State University Herald, 2013, no. 4, 13–16 (in Russian)
[9] Sorokina M. M., Korpacheva M. A., “On the critical $\Omega$-foliated formations of finite groups”, Discrete Mathematics and Applications, 16:3 (2006), 289–298 | DOI | DOI
[10] Vedernikov V. A., Demina E. N., “$\Omega$-Foliated formations of multioperator T-groups”, Siberian Mathematical Journal, 51:5 (2010), 789–804 | DOI
[11] Elovikov A. B., “The factorisation of one-generated partially foliated formations”, Discrete Mathematics and Applications, 19:4 (2009), 411–430 | DOI | DOI
[12] Skiba A. N., Algebra of Formations, Belarusskaya Nauka, Minsk, 1997, 240 pp. (in Russian)
[13] Vedernikov V. A., “Maximal satellites of $\Omega$-foliated formations and Fitting classes”, Proceedings of the Steklov Institute of Mathematics, 2001, Supplementary issues, suppl. 2, S217–S233
[14] Birkhoff G., Lattice Theory, American Mathematical Society, New York, 1973, 423 pp.
[15] Shemetkov L. A., Skiba A. N., Formations of Algebraistic Systems, Nauka, M., 1997, 256 pp. (in Russian)